ترجمه مقاله یک سیستم خبره فازی – عصبی برای تشخیص
دانلود ترجمه مقاله یک سیستم خبره فازی – عصبی برای تشخیص در 17 صفحه ورد قابل ویرایش با فرمت doc به همراه فایل انگلیسی در 12 صفحه ورد قابل ویرایش با فرمت doc |
دسته بندی | پژوهش های دانشگاهی |
فرمت فایل | word |
حجم فایل | 126 کیلو بایت |
تعداد صفحات فایل | 17 |
ترجمه مقاله یک سیستم خبره فازی – عصبی برای تشخیص
دانلود ترجمه مقاله یک سیستم خبره فازی – عصبی برای تشخیص
در 17 صفحه ورد قابل ویرایش با فرمت doc
به همراه فایل انگلیسی در 12 صفحه ورد قابل ویرایش با فرمت doc
چکیده:
منطق فازی،یک شبکه عصبی و سیستم خبره است که برای ایجاد یک سیستم تشخیصی ترکیبی با یکدیگر ترکیب شده اند.با استفاده از چنین سیستمی ما یک روش جدید برای فراگیری مبانی دانش استفاده می کنیم. سیستم ما شامل یک سیستم خبره فازی همراه با یک بیس دانشی با منبع دوگانه است. دو سری قوانین لازم هستند ، که به صورت استنباطی از مثالهای ارائه شده و به صورت استقرایی توسط فیزیک دانان بدست آمده اند. یک شبکه عصبی فازی سعی میکند که از داده های نمونه یاد گرفته و این اجازه را می دهد که قوانین فازی برای دانش پایه را استخراج کنیم.تشخیص electroencephalograms با تفسیر عناصر نموداری بعنوان یک نوع مشاهده در روش ما بکار گرفته می شود. نتایج اولیه نشان دهنده احتمالات مورد نظر با استفاده از روش ما می باشد.
1- مقدمه:
روشهای تکراری شناسایی و ارزیابی پدیده خاص را کار تشخیصی می نامند ،که یکی از کاربردهای اصلی برای هوش مصنوعی (AI) می باشد. با توجه به اینکه رنج وسیعی از چنین کاربرهای تشخیصی وجود دارد . اگرچه رنج وسیعی از چنین کاربردهای تشخیصی در پزشکی وجود دارد ولی این بخش مورد توجه استفاده کنندگام از هوش مصنوعی قرار دارد. عمومی ترین روشهای AI در بخش پزشکی مبتنی بر دانش و مدلسازی رفتار تشخیصی متخصصان است . انواع مختلفی از چنین سیستمهای خبره ای از زمانی که SHRTLIFFE روش SHRTLIFFE MYCIN را بعنوان یک سیستم خبره برای تشخیص آسیبهای خونی انسان طراحی و معرفی کرد ، بوسیله پزشکان مورد استفاده قرار گرفته است. یکی از بزرگترین مشکلات بر سر راه طراحی یک سیستم خبره مناسب ، گردآوری و دانش پایه آن است. ما روش جدیدی را معرفی میکنیم که در آن دانش پایه با منبع دوگانه بوسیله یادگیری قیاسی واستقرایی ایجاد می شود. شیکه های عصبی نیز از این راه برای تشخیص استفاده میکنند . آنها قادرند رابطه بین مجموعه داده ها را با داشتن اطلاعات نمونه که نشاندهنده لایه های ورودی و خروجی آنها است ،یاد بگیرند. در حوزه تشخیص الگو در داده های پزشکی ، شبکه های عصبی زیر بنای روشهایی است که باعث دستیابی به نتایج قابل توجهی شده اند. برای انجام وظیفه چمع آوری دانش پایه که بخشی از روش ترکیبی ما است ، شبکه های عصبی جدیدی معرفی شده اند. منطق فازی که در علوم پزشکی نیز ظاهر شده اند ، با توضیحات شفاهی مبهم سروکار دارند. واژه هایی همانند کم ، زیاد یا احتمالاً برای مدلسازی با استفاده از روشهای منطقی مرسوم ،دشوار هستند. متغیرهای زبانی معرفی شده بوسیله توضیحات فازی ، توضیحات شبه گفتاری نزدیک به گفتارهای یک شخص طیبعی است. تمامی روشهای بالا دارای مزایا و معایبی هستند که در بخش 2 توضیح داده خواهند شد. ترکیب این روشها نه تنها باعث افزایش مزیتها آن می شود بلکه باعث حذف برخی از نقاط ضعف آنها نیز میشود. تاکنون فقط چند روش در تشخیص پزشکی ، روشهای چندگانه هوش مصنوعی را با هم ترکیب کرده اند، که البته با مدلسازی یک پروسه تشریحی پزشکی به نتایج خوبی هم رسیده اند.
A H y b r i d F u z z y - N e u r a l E x p e r t S y s t e m f o r D i a g n o s i s
Christoph S. Herrmann *
Intellektik, Informatik, TH Darmstadt
Alexanderstrafie 10, D-64283 Darmstadt, Germany
herrmann@intellektik.informatik.th-darmstadt.de
Abstract
Fuzzy Logic, a neural network and an expert system are combined to build a hybrid diagnosis system. With this system we introduce a new approach to the acquisition of knowledge bases. Our system consists of a fuzzy expert system with a dual source knowledge base. Two sets of rules are acquired, inductively from given examples and deductively formulated by a physician. A fuzzy neural network serves to learn from sample data and allows to extract fuzzy rules for the knowledge base. The diagnosis
of electroencephalograms by interpretation of graphoelements serves as visualization
for our approach. Preliminary results demonstrate the promising possibilities offered by our method.
1 Introduction
Repetitively applied cognitive tasks of recognizing and evaluating certain phenomena, called diagnostic tasks, are among the main applications for Artificial Intelligence
(AI). As there exists a vast variety of such diagnostic tasks in medicine, it has always belonged to the spectrum of potential users of Artificial Intelligence. Most popular among AI methods in medicine are knowledge based systems [Buchanan and Shortliffe, 1985], modeling the diagnostic behaviour of experts. A variety of such expert systems is being used in everyday practice of physicians since Shortliffe introduced MYCIN Shortliffe, 1976], an expert system designed to diagnose
infections of the human blood. One of the greatest difficulties in designing a convenient expert system is acquiring the knowledge base. We introduce a new approach where a dual source knowledge base is generated by deductive
and inductive learning. Neural networks have also made their way into diagnosis.
They are able to learn relationships between data sets by simply having sample data represented to their input and output layers. In the field of pattern recognition in medical data, neural network based approaches have led to quite remarkable results, for exam- *also affiliated with Mainz University Clinic, Department of Neurology, Reisingerweg, D-55101 Mainz, Germany ple in processing MRI pictures [Hall et a/., 1992] or EEG traces [Mamelak et a/., 1991; Jando et a/., 1993]. For the task of acquiring knowledge bases, which is a part of our hybrid approach, neural networks have been proposed recently [Thrun and Mitchell, 1993]. Fuzzy logic [Zadeh, 1965] also makes its appearance in medicine, dealing with the uncertainty of verbal expressions [Kuncheva, 1991; Nishimura et a/., 199l]. Terms like many, few or probably are hard to model with conventional logic. The linguistic variables offered by fuzzy representations allow pseudo-verbal descriptions close to natural human expressions. All of the above methods bear advantages as well as disadvantages as will be seen in Section 2. Combining these methods not only sums up the advantages
but also avoids some of the disadvantages. Up to now, only few approaches in medical diagnosis combine multiple methods of Artificial Intelligence, although
good results have been made by these means, modeling a physician's decision process [Kuncheva et a/., 1993; Orsier et a/., 1994]. Here, we will describe a hybrid system consisting of a fuzzy expert system for rule-based reasoning with a fuzzy neural network for acquiring case-based knowledge in addition to the explanation-based knowledge from an expert (Section 3). The automatic acquisition of rules by
the network is implemented in parallel to the classical formulation of expert rules.