بررسی انرژی صوت
تحقیق بررسی انرژی صوت در 55 صفحه ورد قابل ویرایش |
دسته بندی | فنی و مهندسی |
فرمت فایل | doc |
حجم فایل | 47 کیلو بایت |
تعداد صفحات فایل | 55 |
بررسی انرژی صوت
ماوراء صوت (Ultrasound)
پرتو X از لحظه کشف به استفاده عملی گذاشته شد, و در طی چند سال اول بهبود در تکنیک و دستگاه به سرعت پیشرفت کرد. برعکس, اولتراسوند در تکامل پزشکیش بطور چشمگیری کند بوده است. تکنولوژی برای ایجاد اولتراسوند و اختصاصات امواج صوتی سالها بود که دانسته شده بود. اولین کوشش مهم برای استفاده عملی در جستجوی ناموفق برای کشتی غرق شده تیتانیک در اقیانوس اطلس شمالی در سال 1912 بکار رفت سایر کوششهای اولیه برای بکارگیری ماوراء صوت در تشخیص پزشکی به همان سرنوشت دچار شد. تکنیکها, بویژه تکنیکهای تصویرسازی, تا پژوهشهای گسترده نظامی در جنگ دوم بطور کافی بسط نداشت. سونار, Sonar (Sound Navigation And Ranging) اولین کاربرد مهم موفق بود. کاربردهای موفق پزشکی به فاصله کوتاهی پس از جنگ, در اواخر دهة 1940 و اوایل دهة 1950 شروع شد و پیشرفت پس از آن تند بود.
اختصاصات صوت
یک موج صوتی از این نظر شبیه پرتو X است که هر دو امواج منتقل کننده انرژی هستند. یک اختلاف مهمتر این است که پرتوهای X به سادگی از خلاء عبور میکنند درحالیکه صوت نیاز به محیطی برای انتقال دارد. سرعت صوت بستگی به طبیعت محیط دارد. یک روش مفید برای نمایش ماده (محیط) استفاده از ردیفهای ذرات کروی است, که نماینده اتمها یا ملکولها هستند که بوسیله فنرهای ریزی از هم جدا شده اند (شکل A 1-20). وقتی که اولین ذره جلو رانده میشود, فنر اتصالی را حرکت میدهد و می فشرد, به این ترتیب نیرویی به ذره مجاور وارد می آورد (شکل 1-20). این ایجاد یک واکنش زنجیره ای میکند ولی هر ذره کمی کمتر از همسایه خود حرکت میکند. کشش با فشاری که به فنر وارد میشود بین دو اولین ذره بیشترین است و بین هر دو تایی به طرف انتهای خط کمتر میشود. اگر نیروی راننده جهتش معکوس شود, ذرات نیز جهتشان معکوس میگردد. اگر نیرو مانند یک سنجی که به آن ضربه وارد شده است به جلو و عقب نوسان کند, ذرات نیز با نوسان به جلو و عقب پاسخ می دهند. ذرات در شعاع صوتی به همین ترتیب عمل میکنند, به این معنی که, آنها به جلو و عقب نوسان میکنند, ولی در طول یک مسافت کوتاه فقط چند میکرون در مایع و حتی از آن کمتر در جامد.
اگر چه هر ذره فقط چند میکرون حرکت میکند, از شکل 1-20 می توانید ببینید که اثر حرکت آنها از راه همسایگانشان در طول خیلی بیشتری منتقل میشود. در همان زمان, یا تقریباً همان زمانی که اولین ذره مسافت a را می پیماید, اثر حرکت به مسافت b منتقل میشود. سرعت صوت با سرعتی که نیرو از یک ملکول به دیگری منتقل میشود تعیین میگردد.
امواج طولی
ضربانات اولتراسوند در مایع به صورت امواج طولی منتقل میشود. اصطلاح «امواج طولی» یعنی اینکه حرکت ذرات محیط به موازات جهت انتشار موج است. ملکولهای مایع هدایت کننده به جلو و عقب حرکت میکنند و ایجاد نوارهای انقباض و انبساط (شکل 2-20) میکنند. جبهه موج در زمان 1 در شکل 2-20, وقتی طبل لرزنده ماده مجاور را می فشارد آغاز میشود. یک نوار انبساط, در زمان 2, وقتی که طبل جهتش معکوس میگردد, پیدا میشود. هر تکرار این حرکت جلو و عقب را یک سیکل (Cycle) یا دوره تناوب گویند و هر سیکل ایجاد یک موج جدید میکند. طول موج عبارت است از فاصله بین دو نوار انقباض, یا دو نوار انبساط, و بوسیلة علامت نشان داده میشود. وقتی که موج صوتی ایجاد شد, حرکت آن در جهت اولیه ادامه می یابد تا اینکه منعکس شود, منکسر شود یا جذب گردد. حرکت طبل لرزان که برحسب زمان رسم شده است, یک منحنی سینوسی را که در طرف چپ شکل 2-20 نشان داده شده است تشکیل میدهد. اولتراسوند, برحسب تعریف, فرکانسی بیش از 20000 سیکل بر ثانیه دارد. صوت قابل شنیدن فرکانسی بین 15 و 20000 سیکل بر ثانیه دارد (فرکانس میانگین صدای مرد در حدود 100 سیکل بر ثانیه و از آن زن در حدود 200 سیکل بر ثانیه میباشد). شعاع صوتی که در تصویرسازی تشخیصی بکار می رود فرکانسی از 000/000/1 تا 000/000/20 سیکل بر ثانیه دارد. یک سیکل بر ثانیه را یک هرتس (Hertz) گویند. یک میلیون سیکل بر ثانیه یک مگاهرتس (مختصر شده آن (MHz) است. اصطلاح هرتس به افتخار فیزیکدان مشهور آلمانی Heinrich R.Hertz میباشد که در سال 1894 وفات یافت.
جذب (Absorption)
جذب اولتراسوند در مایع نتیجه نیروهای اصطکاکی است که با حرکت ذرات در محیط مقابله میکنند. انرژی که از شعاع اولتراسوند گرفته میشود تبدیل به حرارت میگردد. بطور دقیقتر, جذب یعنی تبدیل اولتراسوند به انرژی حرارتی, و تخفیف (Attenuation) یعنی کاهش کلی پیشرفت, از جمله جذب, پخش, و انعکاس.
مکانیسمهای درگیر در جذب نسبتاً پیچیده اند و توضیحات ما خیلی آسان گیری خواهد بود. سه عامل مقدار جذب را تعیین میکنند. (1) فرکانس صوت, (2) ویسکوزیته محیط منتقل کننده, و (3) زمان استراحت (Relaxation) محیط. ما درباره فرکانس در آخر بحث خواهیم کرد زیرا دو عامل دیگر در آن اثر دارند.
اگر ما صوت را تشکیل شده از ذرات مرتعش تصویر کنیم, اهمیت ویسکوزیته آشکار میشود. با افزایش ویسکوزیته آزادی ذره کم میشود و اصطکاک داخلی افزایش می یابد. این اصطکاک داخلی شعاع را جذب میکند یا شدت آن را با تبدیل صوت به گرما می کاهد. در مایعات که ویسکوزیته کمی دارند, جذب خیلی کمی صورت میگیرد. در بافتهای نرم ویسکوزیته بیشتر است و جذب متوسط صورت می پذیرد, درحالیکه استخوان جذب زیاد اولتراسوند نشان میدهد.
زمان استراحت زمانی است که ملکولها پس از اینکه جابجا شدند به وضعیت اولیه خود برمی گردند. این موضوع به حالت ارتجاعی (Resilience) ماده اشاره دارد. دو ماده با ویسکوزیته یکسان ممکن است زمانهای استراحت مختلف داشته باشند. زمان استراحت برای هر ماده بخصوص ثابت است.
وقتی یک ملکول با زمان استراحت کوتاه بوسیله یک موج طولی انقباضی فشرده میشود, قبل از اینکه موج انقباضی بعدی برسد زمان برای برگشت به حالت استراحت خود دارد. یک ملکول با زمان استراحت طولانی تر, ممکن است قادر نباشد پیش از اینکه موج بعدی برسد, کاملاً به حالت اول برگردد. وقتی این اتفاق افتد, موج انقباضی در یک جهت و ملکول در جهت دیگر حرکت میکند. انرژی بیشتری از آنچه که در ابتدا ملکول را حرکت داد لازم است تا جهت ملکول را برگرداند. انرژی اضافی تبدیل به گرما میشود.
در بافت نرم رابطه خطی بین جذب اولتراسوند و فرکانس وجود دارد. دو برابر کردن فرکانس تقریباً جذب را دو برابر میکند و تقریباً شدت شعاع منتقل شده را نصف میکند. آگاهی از جذب باعث گزینش ترانسدوسر درست برای کار ویژه مورد نظر میشود. فرکانسهای شایع موجود ترانسدوسر عبارتند از 1, 25/2, 5/3, 5, 7 و MHz 10. یک فرکانس درست توازنی است بین قدرت تحلیل (فرکانس بالاتر) و قابلیت رساندن انرژی به بافت (فرکانس پایین) میباشد.
حالت B
سونوگرافی پس از سالیان دراز با ایجاد حالت B به صورت یک روش تصویرسازی درآمد. روشهای دیگر اطلاعات مفیدی می دادند ولی فقط در قلمرو محدودی مفید بودند. حالت B به شدت نقش اولتراسوند را به عنوان یک وسیله تشخیصی, بویژه در بیماریهای شکمی گسترش داد. حالت B تصویر یک برش بافتی را ایجاد میکند. اکوها به صورت نقطه ها, شبیه حالت TM نشان داده می شوند, ولی برخلاف حالت TM, ترانسدوسر حرکت میکند بطوری که شعاع صوتی یک سطح بدن را سیر می نماید. ترانسدوسر را می توان به دسته شمشیر, و شعاع اولتراسونیک را می توان به تیغه آن تشبیه کرد. تیغه وقتی در طول بدن می برد, یک تصویر سهمی (Sagital) میدهد, و وقتی از یک طرف به طرف دیگر بدن کشیده میشود, یک تصویر عرضی یا مقطعی ایجاد میکند. تصاویر, شبیه مقاطعی است که اگر ما می توانستیم ببریم و از روبروی آنها نگاهشان کنیم.
در روشهای اسکن کردن حالت B, ترانسدوسر روی پوست بدن گذاشته میشود, روغن معدنی روی پوست برای خارج کردن هوا و بوجود آوردن یک جفت شدن خوب بین ترانسدوسر و پـوسـت بـکار مـی رود. ایـن را یـک اسکـن تمـاسـی
(Contact Scanning)گویند. ترانسدوسر می تواند در یک نقطه بماند و به جلو و عقب متمایل شود و ایجاد یک اسکن ساده قطاعی (Sector) (شکل A 20-20) کند. ولی بیشتر, ترانسدوسر در عرض بدن درحالیکه دوران هم میکند حرکت میکند و ایجاد یک اسکن تماسی مرکب (شکل B 20-20) میکند. این حرکت مرکب (Compound) در بدن مورد نیاز است زیرا ساختمانهای تشریحی در بدن زوایای مختلفی دارند که از آنجاها امواج اولتراسوند بازتابیده می شوند. اگر زاویه بین خط عمود بر سطح ترانسدوسر و بر سطح حدفاصلی که تصویر میشود بیش از 5 درجه باشد, مقدار اولتراسوند بازتابی به ترانسدوسر کمتر از آن است که بتواند تصویری ایجاد کند. بدین ترتیب, حرکت اسکنی مرکب لازم است که سطح ترانسدوسر را برای زوایای مختلفی که حدفاصلها برای ایجاد تصویر دارند مناسب کند. سوار کردن اکوهایی که بوسیلة اسکن مرکب بدست می آید به یک تصویر معنی دار, نیاز به همزمانی دقیق بین حرکات ترانسدوسر و نمایش تیوب اشعه کاتودیک دارد.
در سوار کردن تصویر, تعیین مکان یک اکو نسبت به دیگری بوسیله یک کامپیوتر کوچک که اطلاعات به آن بوسیله یک بازویی که سه مفصل دارد می رسد انجام میگیرد (شکل 21-20). کامپیوتر امتداد خط پایه را با محاسبه درجات سه مفصل حساب میکند. ژرفای اکو, مانند حالت A بوسیله وقفه زمانی تعیین میشود.