دانلود پایان نامه بررسی و تحلیل درایوهای تراکشن جریان مستقیم و القایی

بررسی و تحلیل درایوهای تراکشن جریان مستقیم و القایی

بررسی و تحلیل درایوهای تراکشن جریان مستقیم و القایی در 137 صفحه word قابل ویرایش با فرمت doc

دانلود بررسی و تحلیل درایوهای تراکشن جریان مستقیم و القایی

بررسی و تحلیل درایوهای تراکشن جریان مستقیم و القایی
تحقیق بررسی و تحلیل درایوهای تراکشن جریان مستقیم و القایی
مقاله بررسی و تحلیل درایوهای تراکشن جریان مستقیم و القایی
دانلود تحقیق بررسی و تحلیل درایوهای تراکشن جریان مستقیم و القایی
دانلود مقاله درمورد بررسی و تحلیل درایوهای تراکشن
تحلیل درایوهای تراکشن
جریان مستقیم و القایی
بررسی جریان مست
دسته بندی برق
فرمت فایل doc
حجم فایل 1107 کیلو بایت
تعداد صفحات فایل 137

بررسی و تحلیل درایوهای تراکشن جریان مستقیم و القایی



فصل اول

کشش الکتریکی

برای بررسی خصوصیات روشهای مختلف محرک لوکوموتیو، ابتدا باید مشخصات حرکتی (Synematic Characteristics) لوکوموتیوها در حالت کلی بررسی شود و سپس روشهای مناسب برای ایجاد آن مشخصات حرکتی انتخاب گردد.

در این فصل، ابتدا معادلات حرکتی و دینامیکی (   Synematic & Dynamic Equations ) حاکم بر قطار بدست آمده و در نهایت ویژگیهای موتورهای الکتریکی لکوموتیو در حالت ایده آل نتیجه خواهد داد.

1-1) تعیین مشخصات حرکتی قطار

همانطور که می دانید، برای تعیین نحوة حرکت قطارها در هر مسیر از راه آهن، از یک جدول زمانبندی (Time Table) استفاده می شود که دارای سه بعد: 1- شمارة قطار، 2- مسافت قطار، 3- زمان
می باشد. از طرفی‌تعیین جدول زمانبندی یک مسیر نیازمند‌ دانستن دو دسته اطلاعات برای هر قطار است.

دسته اول شامل اطلاعات مربوط به لحظات خارج بودن قطار از مسیر هستند مانند: زمان توقف در هر ایستگاه (Dwell Time) ، زمان تعویض مسیر ( Time Shunting) و ... که با توجه به طراحی اولیه معلوم فرض می شوند.

دسته دوم شامل اطلاعات مربوط به لحظات حرکت قطار در مسیر هستند که از حل معادلات حرکتی قطار بدست می آیند. برای حل این معادلات، باید در هر لحظه نیروهای وارد بر قطار را که شامل نیروی کششی (Tractive Effort) قطار، نیروی مقاوم (Drag Resistance) یا نیروی کند کننده قطار و نیروی ترمزگیری (Braking Effort) یا متوقف کنندة قطار هستند، تعیین شوند. در ادامه به محاسبه این نیروها می پردازیم.

1-1-1) نیروی محرک قطار

به طور کلی نیروی محرک قطار، تابع نوع موتورهای کششی (Traction Motors) موجود در لکوموتیو و سیستم کنترل آنها بوده و مشخصه این نیرو توسط کارخانه سازنده برای هر نوع لکوموتیو بصورت منحنی نیروی کششی بر حسب سرعت قطار تعیین می گردد.

شکل (1-1) منحنی نیروی کششی F بر حسب سرعت V یک لکوموتیو را نشان می دهد. همانطور که می بینید این منحنی شامل دو ناحیه است. در ناحیه اول نیروی محرک زیاد و بطور تقریباً ثابتی از لحاظ راه اندازی تا سرعت پایه (Base Speed) به لکوموتیو اعمال می شود، بنحویکه سرعت قطار با شتابی زیاد و بصورت تقریباً ثابتی افزایش یابد. در ناحیه دوم که قطار دارای سرعتی بیش از سرعت پایه است، نیروی محرک قطار با افزایش سرعت، کاهش می یابد، بنحویکه حاصلضرب آنها که همان توان مکانیکی قطار است تقریباً ثابت بماند. بنابراین چنانچه نوع لکوموتیو معلوم باشد، نیروی محرک در طول مسیر، تابعی از سرعت قطار خواهد بود. بنابراین داریم:

(1-1)                                                                                   F = fF(V)

 

 

              شکل (1-1) منحنی نیروی کششی F بر حسب سرعت V لکوموتیو

1-1-2) نیروی مقاوم قطار ( Train Resistance )

بطور کلی، نیروی مقاوم قطار در طول مسیر حرکت آن ثابت نیست. این نیرو از مولفه هایی که تابع نوع، وضعیت و مشخصات حرکتی قطار هستند، تشکیل می شود. در ادامه به معرفی این مؤلفه ها می پردازیم.

الف) مقاومت مخصوص چرخشی:

(Specific Rolling Resistance)

مقاومت مخصوص چرخشی Rr ، تابع سرعت قطار V بوده و شکل عمومی آن عبارتست از:

(2-1)                                                                         Rr = C0+C1.v + C2.v2

در این رابطه ضریب C0 ناشی از مقاومت غلتشی بوده و شامل اصطکاک یاتاقانها و مقاومت مسیر نیز می باشد. ضریب C1 ناشی از تکانهای مزاحم واحد جلو برندة قطار است و ضریب C2 نیز ناشی از مقاومت هوا می باشد.

یکی از روابط تجربی متداول برای مدل کردن مقاومت مخصوص چرخشی، رابطه شاتوف (Sauthoffs formula) می باشد که بصورت زیر بیان می شود:

(3-1)                                    

Rr  مقاومت مخصوص چرخشی بر حسب [ N/t]

a  ضریبی وابسته به نوع یاتاقانها

v  سرعت قطار بر حسب [Km/h]

Fe  ضریبی وابسته به سطح جلویی واگنها

W جرم قطار بر حسب [t]

nw  تعداد واگنها

g شتاب جاذبه بر حسب [m/s2]

ب)  مقاومت مخصوص شیب (Specific Grade Resistance):

مقاومت شیب، مولفه ای، از نیروی جرم قطار است که در جهت عکس قطار و یا در جهت حرکت آن اعمال می شود. بنابراین هنگامیکه شیب مثبت باشد، موجب کندی سرعت قطار شده و در حالیکه شیب منفی است موجب افزایش سرعت آن می شود. بعبارت دیگر، این مقاومت تابع وضعیت قطار بر روی مسیر است.

دانلود بررسی و تحلیل درایوهای تراکشن جریان مستقیم و القایی

بررسی و تحلیل درایوهای تراکشن جریان مستقیم و القایی

بررسی و تحلیل درایوهای تراکشن جریان مستقیم و القایی

پایان نامه و پروژه پایانی کارشناسی در رشته مهندسی برق – الکترونیک با عنوان بررسی و تحلیل درایوهای تراکشن جریان مستقیم و القایی

دانلود بررسی و تحلیل درایوهای تراکشن جریان مستقیم و القایی

درایوهای تراکشن جریان القایی
سیستم های تراکشن الکتریکی
درایوهای تراکشن جریان مستقیم
دانلود پایان نامه رشته الکترونیک
دانلود پایان نامه الکترونیک
بررسی و تحلیل درایوهای تراکشن جریان مستقیم و القایی
دسته بندی برق، الکترونیک، مخابرات
فرمت فایل doc
حجم فایل 5410 کیلو بایت
تعداد صفحات فایل 140

دانلود پایان نامه مهندسی الکترونیک

بررسی و تحلیل درایوهای تراکشن جریان مستقیم و القایی

 
 
پیشگفتار
در گذشته بیشتر ماشین های حمل و نقل از ولتاژ DC  ثابت ریل سوم بوسیله درایوهای DC تغذیه می شدند. موتورها بوسیله کنترل کننده های نوع مقاومتی، که شتاب لازم را برای ماشین فراهم می کردند، کنترل می شدند. این سیستم ها همچنین شامل ترمز دینامیکی برای کم کردن شتاب و شامل سیستم های ترمز سایشی جهت پشتیبانی یا تکمیل سیستم های ترمز دینامیکی می باشند.ولی امروزه الکترونیک قدرت عامل عمده در بهبود سیستم های محرکه پیشرفته شده است. وجود عناصر نیمه هادی و تولید اینورترها باعث کاهش هزینه های راهبری شده اند. گام اول جایگزینی کنتاکتورها با مقاومت ها و بوسیله یکسو کننده های کنترل شده و چاپرهای DC  جهت کنترل توان موتورهای DC  بوده است. 
 
در گام دوم کاربرد موتورهای قفس سنجابی با پیشرفت اینورترهای با ولتاژ و فرکانس متغیر (VVVF) ممکن شده است. حتی در این زمینه، راه آهن به عنوان پیشگام در سیستم های الکترونیک قدرت شناخته شده است.سیستم محرکه AC  درجه بالایی از ترمز احیا کننده را با مقدار بسیار کم تجهیزات ایجاد می کند. مقدار توان احیا شده به فاکتورهای زیادی از جمله مکان ایستگاه و شدت ترافیک بستگی دارد. مطالعات رایانه ای نشان داده اند که احیای توان در سیستم های محرکه AC ، 40 تا 50 درصد در مقایسه با ماشین های معادل که با کنترل کننده های مقاومتی و ترمز دینامیکی کار می کنند بیشتر می باشد.
 
در نتیجه در حال حاضر اهداف طراحان، سازندگان و استفاده کنندگان سیستم های تراکشن الکتریکی بر اساس قابلیت اطمینان حداکثر، دسترسی آسان، حداقل سرویس و نگهداری و ... همگی با لوکوموتیوهای مدرن با تراکشن القایی تحقق یافته است. در واقع رسیدن به این هدف ناشی از موارد زیر می باشد:
 
الف) امکان استفاده از موتورهای تراکشن القایی ساده و محکم.
ب) الکترونیک قدرت و کنورترهای مدرن .
پ) کنترل و نظارت میکروپروسسوری قوی و خیلی سریع.
 
 
 
 
کلمات کلیدی:

درایوهای تراکشن جریان القایی

سیستم های تراکشن الکتریکی

درایوهای تراکشن جریان مستقیم

 
 
 
فهرست مطالب
پیشگفتار 1

فصل اول کشش الکتریکی 3

1-1) تعیین مشخصات حرکتی قطار 4
1-1-1) نیروی محرک قطار 5
شکل (1-1) منحنی نیروی کششی F بر حسب سرعت V لکوموتیو 6
1-1-2) نیروی مقاوم قطار ( Train Resistance ) 6

شکل (2-1) اثر مقاومت شیب بر روی سرعت قطار 7

1-1-3) نیروی ترمز گیری قطار 10
شکل( 3-1) منحنی نیروی ترمز گیری قطار شامل ترمزگیری الکتریکی و مکانیکی در سرعتهای مختلف 12
1-1-4) محاسبه منحی سرعت بر حسب زمان 12
شکل  (4-1) منحنی های سرعت بر حسب زمان و نیروی محرک بر حسب سرعت قطار 14
ناحیه 3 از لحظه t2 تا t3 : 14

1-2) تعیین مشخصات موتورهای کششی 15

1-2-1) مشخصه گشتاور – سرعت موتورهای الکتریکی 16
شکل (6-1) منحنی گشتاور باز دارنده الکتریکی بر حسب سرعت 17
1-2-2) عملکرد موازی 18
1-2-3) نوسانهای ولتاژ 18
1-2-4)محدودیت وزن وحجم 18

 

فصل دوم: موتورهای تراکشن جریان مستقیم 20

تاریخچه سیستم های حمل و نقل الکتریکی DC 20

2-2) موتور جریان مستقیم با تحریک موازی 22
شکل (1-2) مشخصه گشتاور الکتریکی و جریان آرمیچر بر حسب سرعت   موتور تحریک موازی 23

2-3) موتورهای جریان مستقیم با تحریک مجزا 24

2-3-1) معادلات ماشین جریان مستقیم با تحریک مجزا 25
شکل (2-2) مدل ماشین تحریک مجزا با فرض خطی بودن مشخصه مغناطیسی 25
در زیر به نحوه ی  کنترل موتور در دو ناحیه مذکور  می پردازیم: 26
الف) ناحیه اول موتوری 26

2-3-3) کنترل ماشین جریان مستقیم با تحریک مجزا درحالت ژنراتوری 28

الف) ناحیه اول ژنراتوری 28
شکل (5-2) منحنی مشخصه های ژنراتور در حالت توان ثابت در ناحیه اول 30
شکل (6-2) منحنی مشحصه های ژنراتور در حالت گشتاور ثابت در ناحیه اول 31
ب) ناحیه دوم ژنراتوری 32
ج) ناحیه سوم ژنراتوری 32
شکل (7-2) منحنی مشخصه های ماشین در ناحیه دوم ژنراتوری 33
شکل (8-2) منحنی مشخصه های ماشین در ناحیه سوم ژنراتوری 33
2-4) موتور جریان مستقیم با تحریک سری 33
2-4-2) کنترل ماشین جریان مستقیم با تحریک سری در حالت موتوری 36
در زیر بنحوة کنترل موتور در دو ناحیه موتوری می پردازیم. 36
الف) ناحیه اول موتوری 36
ب) ناحیه دوم موتوری 36
شکل (10-2) منحنی مشخصه های ماشین سری در ناحیه اول موتوری 37
شکل (11-2) مقاومت قابل تنظیم برای کنترل ماشین در ناحیه دوم موتوری 37
شکل (12-2) منحنی مشخصه های ماشین سری در ناحیه دوم موتوری 38
2-4-3) کنترل ماشین جریان مستقیم با تحریک سری در حالت ژنراتوری 38

نحوه کنترل ژنراتور در سه ناحیه مذکور می پردازیم: 39

ناحیه اول ژنراتوری 39
شکل (14-2) منحنی مشخصه های ماشین سری در ناحیه اول ژنراتوری در حالت گشتاور ثابت 40
ناحیه دوم ژنراتوری 40
ناحیه سوم ژنراتوری 41
 

فصل سوم: مدارهای کنترل سیستم های تراکشن جریان مستقیم 43

شکل (3-3) یک نمونه مدار کنترل موتور سری با استفاده از چاپر به عنوان منبع تغذیه ورودی 48
شکل (4-3) یک نمونه مدار کنترل ماشین سری با قابلیت بازیابی انرژی 49
 
فصل چهارم: ملاحظات کاربردی 56

4-1) تاریخچه سیستم های حمل و نقل الکتریکی AC 56

4-2) مقایسه کاربرد موتورهای القایی قفسه سنجابی با انواع دیگرسیستم های کشنده 58

4-2-1) مقایسه با موتور DC 58
1) سرعتهای زیاد : 58
2) مقاومت و قابلیت بالا و هزینه نگهداری و تعمیرات کم : 58
3) گشتاور یکنواخت بالا با قابلیت اضافه بار ذاتی : 58
4) نسبت توان به وزن بالا: 59
5) قابلیت ترمز احیا کنندة ذاتی : 59
6) مشخصه گشتاور – سرعت تند (Hteep ) : 59

7) عملکرد پایدار با اتصال موازی : 59

4-2-2) مقایسه با  موتور سنکرون : 60
جدول (1-4) مقایسه موتور القایی با موتور سنکرون 60
4-3-1) ایجاد گشتاور در موتور القایی سه فاز 62
شکل(1-4)مدار معادل تکفاز موتور القایی 64
شکل(4-4) منحنی گشتاور- سرعت در فرکانس و ولتاژ ثابت 69

4-3-5) عملکرد فرکانس متغیر 72

شکل (7-4) منحنی های گشتاور لغزش در نسبت ثابت ( هرتز/ ولت) 73
شکل (8-4) ناحیه های مختلف منحنی گشتاور – سرعت با منبع تغذیه فرکانس متغیر – ولتاژ متغیر 74
شکل (9-4) ارتباط بین فرکانس – ولتاژ در ماشین القایی 74
4-3-7)عملکرد HP ثابت (Constant-Horse Power) 75
 

فصل پنجم طراحی و مقادیر نامی موتور و اینورتر در سیستم های تراکشن القایی 78

مشخصه های مورد نظر سیستم تراکشنن الکتریکی مناسب بدین صورت خلاصه می شود: 84
الف) چگالی گشتاور بالا [N.m/kg] ، چگالی توان بالا [Kw/Kg]، کمترین ابعاد. 84
ب) ناحیه توان ثابت وسیع، کمترین توان ظاهری اینورتر [KVA]. 84
پ) راندمان بالا. 84
5-2-2) معیار طراحی موتور 88
ب) نسبت طول رتور به قطر رتور   89
جدول (1-5) تأثیر نسبت طول به قطر رتور   بر مشخصه های موتور ( P.U.) 89
جدول (2-5) تأثیر تعداد شیارهای استاتور بر مشخصه های موتور (P.U. ) 90
ت) ضخامت فاصله هوایی 91
جدول (3-5) تأثیر ضخامت فاصله هوایی بر مشخصه های موتور (P.U. ) 91
ث) همانطور که گفته شد، یک وسیله نقلیه الکتریکی اغلب در ناحیه تضعیف میدان کار می کند 91
جدول (5-5) مقایسه بین پارامترهای دو موتور: طرح معمولی و طرح مخصوص 94
5-3) فاکتورهای احیا کنندگی (Regeneration Factors) 95
5-4) بررسی نمونه عملی 98
 

فصل ششم :درایوهای تراکشن اینورتری پیشرفته و کنترل آنها 103

6-1) سیر تکامل درایو AC در سیستم های تراکشن 103
6-2) درایوهای تراکشن موتور القایی 105
شکل (1-6) درایوهای تراکشن با موتورهای سه فاز 106
6-2-2) درایوهای تراکشن اینورتر منبع جریان تغذیة DC 108
شکل (4-6) وضعیت های حلقه DC یک درایو اینورتر منبع جریان 111
شکل (5-6) اینورتر منبع ولتاژ مدار قدرت و شکل موج ها 113
شکل (6-6) مدار قدرت یک فاز اینورتر NPC سه سطحی را نشان می دهد 115
شکل (6-6) اینورتر منبع ولتاژ سه سطحی NPC- مدار قدرت و جدول سوئیچینگ 116
6-2-4) درایوهای تراکشن VSI تغذیه AC مبدل پالس 116
6-2-6-1) PWM موج مربعی(Square – Wave PWM) 120
شکل( 9-6) شکل موج های ورودی و خروجی مقایسه کننده یک اینورتر  PWM موج مربعی 120
6-2-6-2) PWM سینوسی (Sinusoidal PWM) 122
شکل (11-6) روش مدولاسیون برای قطار Eurostar 124
شکل(12- 6) سیستم کنترل کننده جریان PWM در حالت کلی 126
 
پیوست 1 129
مقایسه سیستم های محرک انواع لوکوموتیو و انتخاب سیستم مناسب برای حمل و نقل ریلی 129
منابع 140
 

 

دانلود بررسی و تحلیل درایوهای تراکشن جریان مستقیم و القایی