دانلود الگوریتم های خوشه بندی در شبکه های حسگر بی سیم

الگوریتم های خوشه بندی در شبکه های حسگر بی سیم

شبکه های حسگر بی سیم شامل تعدا زیادی از سنسورهای کوچک است که که می توانند یک ابزار قوی برای جمع آوری داده در انواع محیط های داده ای متنوع باشند

دانلود الگوریتم های خوشه بندی در شبکه های حسگر بی سیم

الگوریتم های خوشه بندی
شبکه های حسگر بی سیم
دسته بندی کامپیوتر و IT
فرمت فایل doc
حجم فایل 1591 کیلو بایت
تعداد صفحات فایل 133

شبکه های حسگر بی سیم شامل تعدا زیادی از سنسورهای کوچک است که که می توانند یک ابزار قوی برای جمع آوری داده در انواع محیط های داده ای متنوع باشند. داده های جمع آوری شده توسط هر حسگر به ایستگاه اصلی منتقل می شود تا به کاربر نهایی ارائه می شود. یکی از عمده ترین چالشها در این نوع شبکه ها، محدودیت مصرف انرژی است که مستقیما طول عمر شبکه حسگر را تحت تأثیر قرار میدهد ، خوشه بندی بعنوان یکی از روشهای شناخته شده ای است که بطور گسترده برای مواجه شدن با این چالش مورد استفاده قرار میگیرد.

خوشه بندی به شبکه های حسگر بی سیم معرفی شده است چرا که طبق آزمایشات انجام شده ،روشی موثر برای ارائه ی بهتر تجمع داده ها و مقیاس پذیری برای شبکه های حسگر بی سیم بزرگ است. خوشه بندی همچنین منابع انرژی محدود حسگرها را محافظت کرده و باعث صرفه جویی در مصرف انرژی می شود.

فهرست مطالب

چکیده1

مقدمه. 2

فصل اول :شبکه ی حسگر بی سیم. 3

مقدمه. 4

بررسی اجمالی مسائل کلیدی.. 6

انواع شبکه حسگر بی سیم. 11

ساختارهای شبکه حسگر بی سیم. 14

ویژگی‌های سخت‌افزاری:17

کاربردهای شبکه ی حسگر بی سیم. 20

عوامل موثر بر شبکه ی حسگر بی سیم. 26

پشته پروتکلی.. 33

نتیجه گیری بخش... 38

فصل دوم :انواع الگوریتم های خوشه بندی.. 39

مقدمه. 40

بررسی کلی خوشه بندی.. 40

الگوریتم های خوشه بندی سلسله مراتبی.. 40

الگوریتم های خوشه بندی طیفی.. 41

الگوریتم های خوشه بندی مبتنی بر شبکه ی گرید. 42

الگوریتم خوشه بندی مبتنی بر تراکم. 43

الگوریتم های خوشه بندی پارتیشن بندی.. 43

الگوریتم خوشه بندی ژنتیک k-means برای ترکیب مجموعه داده های عددی و قاطعانه. 44

الگوریتم مقیاس.......45

الگوریتم k-means هماهنگ.. 46

مقداردهی k-means با استفاده از الگوریتم ژنتیک.. 47

رویکرد مجموع خوشه ها برای داده های ترکیبی............48

الگوریتم تکاملی ترکیبی.......49

اصلاح جهانی الگوریتم k-means 50

الگوریتم ژنتیک k-means سریع. 50

نتیجه گیری بخش... 52

فصل سوم :الگوریتم های خوشه بندی در شبکه ی حسگر بی سیم. 53

مقدمه. 54

چالش ها در الگوریتم های خوشه بندی در شبکه ی حسگر بی سیم. 56

فرآیند خوشه بندی.. 58

پروتکل های خوشه بندی موجود. 59

الگوریتم های ابداعی......59

طرح های وزنی.......60

طرح های شبکه ی گرید. 62

طرح های سلسله مراتبی و دیگر طرح ها......64

الگوریتم های خوشه بندی در شبکه های حسگر بی سیم ناهمگون. 73

مدل ناهمگون برای شبکه های حسگر بی سیم......73

طبقه بندی ویژگی های خوشه بندی در شبکه های حسگر بی سیم ناهمگون......75

الگوریتم خوشه بندی برای شبکه های حسگر بی سیم ناهمگون......77

نتیجه گیری بخش... 92

 فصل چهارم:بررسی دو الگوریتم خوشه بندی EECS و A-LEACH.. 93

مقدمه. 94

EECS.. 95

نمای کلی مشکلات.. 95

جزئیات EECS. 97

تحلیل EECS. 103

شبیه سازی.. 107

رویکردهای آینده112

A-LEACH.. 113

آثار مربوطه. 113

تجزیه و تحلیل انرژی پروتکل ها115

A-LEACH.. 115

شبیه سازی.. 118

رویکردهای آینده و نتیجه گیری 122

نتیجه گیری.. 123

 فهرست اشکال

شکل .1 . طبقه بندی موضوعات مختلف در شبکه ی حسگر بی سیم. 8

شکل .2. ساختار کلی شبکه ی حسگر بی سیم. 16

شکل. 3. ساختار خودکار16

شکل. 4. ساختار نیمه خودکار17

شکل. 5.ساختار داخلی گره ی حسگر. 18

شکل 6. پشته ی پروتکلی.. 34

شکل 7 . نمونه ای از الگوریتم GROUP. 63

شکل .8 . الف )ساختار شبکه ب)شبکه بعد از چند دور78

شکل 9. الف) ساختار شبکه ب) خوشه بندی EDFCM.. 85

شکل 10. سلسله مراتب خوشه در زمینه ی سنجش... 87

شکل 11. دیاگرام شماتیک از مناطق در اندازه های مختلف.. 89

شکل .12. تاثیر هزینه ی سرخوشه ی موردنظر. 102

شکل. 13. پدیده ی شیب در شبکه. 105

شکل.14. الف : توزیع غیر یکنواخت ب : توزیع یکنواخت.. 107

شکل. 15. الف: صحنه ی معمولی ب: صحنه ی بزرگ 108

شکل .16. الف : صحنه ی معمولی ب: صحنه ی بزرگ 109

شکل. 17. الف : صحنه ی معمولی ب: صحنه ی بزرگ.. 110

شکل.18. تعداد خوشه ها در هر دور در EECSو LEACH(صحنه ی 1)111

شکل. 19.الف : صحنه ی معمولی ب : صحنه ی بزرگ.. 112

شکل .20. مدل شبکه ای A-LEACH.. 118

شکل 21. شبکه ی حسگر بی سیم با مدل A-LEACH.. 119

شکل .22. طول منطقه ی ثبات برای مقادیر مختلف ناهمگونی.. 120

شکل 23. تعداد گره های زنده نسبت با دور با m=0.1 و a=1. 120

شکل .24. تعداد گره های زنده نسبت به دور با m=0.3 و a=1. 121

شکل. 25. تعداد گره های زنده نسبت به دور با m=0.5 وa=1. 121

 فهرست جداول

جدول 1 .مقایسه ی الگوریتم های خوشه بندی طرح سلسله مراتبی.. 72

جدول.2. مقایسه ی الگوریتم های خوشه بندی.. 91

جدول.3. مفهوم نمادها98

جدول .4 . توصیف حالات یا پیغام ها98

جدول 5 . پارامترهای شبیه سازی.. 107

 

دانلود الگوریتم های خوشه بندی در شبکه های حسگر بی سیم

دانلود پایان نامه داده کاوی

داده کاوی

این محصول در قالب فایل word و در 144 صفحه تهیه و تنظیم شده است

دانلود داده کاوی

نقش داده کاوی
داده کاوی چیست
امروزه چگونه از داده کاوی استفاده می شود
گستره کاربرد دانش داده کاوی
روشهای داده کاوی
مراحل داده کاوی
تبدیل مسئله کسب و کار و تجارت به یک مسئله داده کاوی
مسئله داده کاوی چگونه مسئله ای است
کاربرد داده کاوی در بازاریابی و مدیریت ارتباط با مشتری
داده کاوی برای بهبود اعمال بازاریابی مستقیم
داده کاوی برای مدیریت
دسته بندی فنی و مهندسی
فرمت فایل doc
حجم فایل 7287 کیلو بایت
تعداد صفحات فایل 144

داده کاوی

 

توجه :

شما می توانید با خرید این محصول فایل " قلق های پایان نامه نویسی (از عنوان تا دفاع)" را به عنوان هدیه دریافت نمایید.

بسیاری از فروشگاهها پس از گذشت یک ربع قرن از آغاز فعالیت، هنوز مشتری وفادار خود را دارند. این وفاداری تصادفی نیست. اداره کنندگان این فروشگاهها به سلایق و نیازهای مشتریان خویش واقف شده اند و توان مالی خرید آنها را می شناسند. وقتی کسی از آنها راهنمایی بخواهد پاسخ آنها براساس دانش اندوخته شان در مورد ذائقه و بودجه آن مشتری و همچنین دانش شان در باره محصولات خودشان خواهد بود.

افرادی که به این فروشگاه رفت و آمد دارند در مورد کالاهای آن فروشگاه چیزهای زیادی می دانند. هر چند این دانش یکی از دلایل آنها برای ایجاد خرید از آنجاست و به همین دلیل به فروشگاه های دیگر نمی روند ولی داشتن اطلاعات خودمانی و صمیمانه در باره هر شخص آنها را مشتری دائمی آنجا می کند و به یک مغازه مشابه دیگر در آنطرف خیابان و روبروی همین فروشگاه نمی روند و برخوردار بودن این فروشگاه از اطلاعات خودمانی و صمیمانه در باره هر شخص آنها را مشتری دائمی آنجام می کند . یک مغازه مشابه دیگر می تواند در آنطرف خیابان و روبروی همین مغازه باز شود ولی ماهها و حتی سالها طول می کشد تا آنها به این سطح از دانش در باره مشتریانشان دست یابند.

طبیعتاً تجارتهای کوچکی که مدیریت خوبی دارند می توانند به نحوه ایجاد رابطه با مشتریانشان پی ببرند. آنها با گذشت زمان در باره مشتریانشان به چیزهای بیشتر و بیشتری پی خواهند برد و از آن دانش برای خدمت بهتر به مشتریان استفاده خواهند نمود و نتیجه کار، مشتریان وفادار و خرسند و تجارتهای سودآور خواهد بود.

شرکتهای بزرگ با صدها هزار یا میلیونها نفر مشتری از مزیت برقراری روابط شخصی حقیقی با تک تک مشتریانشان بی بهره اند. این موسسات عظیم باید به وسایل دیگری برای برقراری رابطه با مشتریانشان تکیه نمایند. آنها باید یاد بگیرند که از آنچه که به وفور دارند یعنی داده هایی که از طریق تعامل با تک تک مشتریان به دست آمده است نهایت بهره را ببرند. این کتاب در مورد تکنیکهای تحلیلی بحث میکند که برای تبدیل داده های مشتریان به دانش در باره مشتریان استفاده میشود.

عناوین :

مدیریت روابط تحلیلی با مشتریان
نقش سیستمهای پردازش تعاملات
نقش ذخیره سازی داده ها
نقش داده کاوی
نقش استراتژی مدیریت روابط با مشتری
داده کاوی چیست؟
دسته بندی
تخمین
پیش بینی
دسته بندی شباهت یا قوانین وابستگی
خوشه بندی
نمایه سازی
چرا حالا؟
داده ای که ایجاد شده است
داده ای که ذخیره شده است
توان محاسباتی قابل دسترسی است
علاقه به مدیریت روابط با مشتریان فراوان است
همه تجارتها، خدمات هستند
اطلاعات یک محصول است
محصولات نرم افزاری داده کاوی تجاری موجودند
امروزه چگونه از داده کاوی استفاده می شود؟
یک سوپر مارکت واسطه اطلاعات می شود
تجارت بر اساس توصیه
فروش متقابل و همزمان
شرکت ها از داده کاوی برای توسعه توانایی فروش
حفظ مشتریان خوب و غربال کردن مشتریان بد
تحول اساسی در یک صنعت
گستره کاربرد دانش داده کاوی
مطالب آموخته شده در این فصل
روشهای داده کاوی
چرا باید روشی داشت؟
یادگیری چیزهایی که درست نیستند
ممکن است الگوها نشان دهنده هیچ قاعده ضمنی نباشند
مجموعه مدل ممکن است نشانگر جامعه مرتبط نباشد
ممکن است داده ها دارای سطح جزئیات نادرستی باشد
یادگیری چیزهایی که درست هستند اما مفید نیستند
یادگیری چیزهایی که از قبل معلوم بوده اند
یادگیری چیزهایی که قابل استفاده نیستند
آزمون فرضیه
تولید فرضیات
آزمودن فرضیات
مدل هاف نمایه سازی و پیش بینی
نمایه سازی
پیش بینی
مراحل داده کاوی
مرحله اول : تبدیل مسئله کسب و کار و تجارت به یک مسئله داده کاوی
مسئله داده کاوی چگونه مسئله ای است؟
چگونه از نتایج استفاده خواهد شد؟
چگونه نتایج بیان خواهد شد؟
نقش کاربران تجاری و فن آوری اطلاعات
خطردرک نادرست مسئله کسب و کار و تجارت: یک حکایت هشدار دهنده
مرحله دوم: انتخاب داده های مناسب
چه چیزی موجود است ؟
چقدر داده کافی است ؟
چه مقدار از اطلاعات پیشین مورد نیاز است؟
تعداد مناسب متغیرها
داده ها باید حاوی چه چیز باشند؟
مرحله سوم : شناخت داده ها
بررسی توزیعها
مقایسه ارقام با توصیفات
اعتبار بخشی به فرضیات
سئوالات زیادی بپرسید
مرحله چهارم : تهیه یک مجموعه مدل
جمع آوری بخشهای مشتریان
تهیه یک نمونه متعادل
در نظر گرفتن چارچوبهای زمانی چند گانه
تقسیم بندی مجموعه مدل
مرحله پنجم: رفع مشکلات داده ها
- متغیرهای عددی با توزیع و مشاهدات پرت نادرست
مقادیر گمشده
ارقام با معانی که در طول زمان تغییر می کنند
کد گذاری غیر ثابت داده ها
مرحله ششم: تبدیل داده  ها برای استخراج اطلاعات
کشف روندها
تبدیل شماره ها به نسبتها
مرحله هفتم : تهیه مدلها
مرحله هشتم : ارزیابی مدلها
- ارزیابی مدلهای توصیفی
- ارزیابی مدلهای هدایت شده
- ارزیابی دسته بندی کننده ها و پیشگوها
- ارزیابی تخیمن زننده ها
مقایسه مدلها با استفاده از صعود
مشکلات صعود
مرحله نهم : پیاده سازی مدلها
مرحله دهم : ارزیابی نتایج
مرحله یازدهم: شروع دوباره
مطالب آموخته شده در این فصل
کاربرد داده کاوی در بازاریابی و مدیریت ارتباط با مشتری
مشتری با لقوه
شناسایی مشتریان بالقوه خوب
انتخاب کانال ارتباطی
انتخاب پیامهای درست
چه کسی با مشخصات مطابقت دارد؟
اندازه گیری تطابق گروههای خوانندگان
داده کاوی برای بهبود اعمال بازاریابی مستقیم
مدل سازی پاسخ
بهینه کردن پاسخ با بودجه ای ثابت
بهینه سازی سوددهی اعمال بازاریابی
چگونه مدل بر سوددهی اثر می گذارد؟
یافتن افرادی که بیشتر از دیگران تحت تأثیر پیام قرار گرفته اند
تجزیه و تحلیل پاسخای متفاوت
استفاده از مشتریان فعلی جهت شناخت مشتریان بالقوه
مشتریان را پیش از این که تبدیل به مشتری شوند دنبال کنید
اطلاعات مشتریان جدید را جمع آوری کنید
متغیرهای زمان جذب مشتری می تواند نتایج آینده را پیش بینی نماید
داده کاوی برای مدیریت ارتباط با مشتری
مطابقت فعالیتها با مشتریان
بخش بندی مشتریان
یافتن قسمتهای رفتاری
اتصال قسمتهای تحقیقات در بازار با داده های رفتاری
کاهش مواجه با خطرات اعتباری
پیش بینی کسی که در پرداخت بدهی خود کوتاهی خواهد کرد
تعیین ارزش مشتری
یافتن زمان مناسب برای یک پیشنهاد
فروش چند بعدی و فروش صعودی و توصیه ها
توصیه ها
حفظ و از دست دادن مشتری
تشخیص از دست دادن مشتری
چرا از دست دادن مشتری مهم است
انواع مختلف از دست دادن مشتری
انواع مختلف مدل های از دست دادن مشتری
پیش بینی و تعیین مشتریانی که سیستم را ترک می کنند
پیش بینی این که مشتریان تا چه مدت باقی خواهند ماند
مطالب آموخته شده در این فصل

دانلود داده کاوی

دانلود پروژه و پایان نامه مهندسی کامپیوتر و آی تی با عنوان ارائه مدلی جهت تخمین ارزش اطلاعات با استفاده از روشهای داده‌کاوی

پروژه و پایان نامه مهندسی کامپیوتر و آی تی با عنوان ارائه مدلی جهت تخمین ارزش اطلاعات با استفاده از روشهای داده‌کاوی

داده کاوی و کشف دانش در پایگاه داده ها از جمله موضوع هایی هستند که همزمان با ایجاد و استفاده از پایگاه داده ها در اوایل دهه 80 برای جستجوی دانش در داده ها شکل گرفت

دانلود پروژه و پایان نامه مهندسی کامپیوتر و آی تی با عنوان ارائه مدلی جهت تخمین ارزش اطلاعات با استفاده از روشهای داده‌کاوی

روشهای داده‌کاوی
تخمین ارزش اطلاعات
کشف دانش و داده کاوی
دانلود پروژه و پایان نامه مهندسی کامپیوتر و آی تی با عنوان ارائه مدلی جهت تخمین ارزش اطلاعات با استفاده از روشهای داده‌کاوی
سیستم همکاری در فروش فایل
همکاری در فروش فایل
همکاری در فروش
فروش فایل
انجام پروژه و پایان نامه مهندسی کامپیوتر و آی تی
fileina
فروشگاه ساز فایل
فروشگاه فایل
دسته بندی کامپیوتر و IT
فرمت فایل doc
حجم فایل 1155 کیلو بایت
تعداد صفحات فایل 68

پروژه و پایان نامه مهندسی کامپیوتر و آی تی با عنوان ارائه مدلی جهت تخمین ارزش اطلاعات با استفاده از روشهای داده‌کاوی

 
مقدمه 
از هنگامی که رایانه در تحلیل و ذخیره سازی داده ها بکار رفت (1950) پس از حدود 20 سال، حجم داده ها در پایگاه داده ها دو برابر شد. ولی پس از گذشت دو دهه و همزمان با پیشرفت فن آوری اطلاعات(IT)  هر دو سال یکبار حجم داده ها، دو برابر شد. همچنین تعداد پایگاه داده ها با سرعت بیشتری رشد نمود. این در حالی است که تعداد متخصصین تحلیل داده ها و آمارشناسان با این سرعت رشد نکرد. حتی اگر چنین امری اتفاق می افتاد، بسیاری از پایگاه داده ها چنان گسترش یافته اند که شامل چندصد میلیون یا چندصد میلیارد رکورد ثبت شده هستند و امکان تحلیل و استخراج اطلاعات با روش های معمول آماری از دل انبوه داده ها مستلزم چند روز کار با رایانه- های موجود  است. 
 
حال با وجود سیستم های یکپارچه اطلاعاتی، سیستم های یکپارچه بانکی و تجارت الکترونیک، لحظه به لحظه به حجم داده ها در پایگاه داده های مربوط اضافه شده و باعث به وجود آمدن انبارهای ( توده های ) عظیمی از داده ها شده است به طوری که ضرورت کشف و استخراج سریع و دقیق دانش از این پایگاه داده ها را بیش از پیش نمایان کرده است (چنان که در عصر حاضر گفته می شود « اطلاعات طلاست» ). هم اکنون در هر کشور، سازمان ها، شرکت ها و . . . برای امور بازرگانی، پرسنلی، آموزشی، آماری و . . . پایگاه داده ها ایجاد یا خریداری شده است، به طوری که این پایگاه داده ها برای مدیران، برنامه ریزان، پژوهشگران و . . . جهت تصمیم گیری های راهبردی، تهیه گزارش های مختلف، توصیف وضعیت جاری خود و . . . می تواند مفید باشد. داده کاوی  یا استخراج و کشف سریع و دقیق اطلاعات با ارزش و پنهان از این پایگاه داده ها از جمله اموری است که هر کشور، سازمان و شرکتی به منظور توسعه علمی، فنی و اقتصادی خود به آن نیاز دارد. 
 
در کشور ما نیز سازمان ها، شرکت ها و مؤسسات دولتی و خصوصی به طور فزاینده ولی آهسته در حال ایجاد یا خرید نرم افزارهای پایگاه داده ها و مکانیزه کردن سیستم های اطلاعات خود هستند، همچنین با توجه به فصول دهم و یازدهم قانون برنامه سوم توسعه در خصوص داد و ستدهای الکترونیکی و همچنین تأکید بر برخورداری کشور از فن آوری های جدید اطلاعات برای دستیابی آسان به اطلاعات داخلی و خارجی، دولت مکلف شده است امکانات لازم برای دستیابی آسان به اطلاعات، زمینه سازی برای اتصال کشور به شبکه های جهانی و ایجاد زیر ساخت های ارتباطی و شاهراه های اطلاعاتی فراهم کند. واضح است این امر باعث ایجاد پایگاه های عظیم داده ها شده و ضرورت استفاده از  داده کاوی  را بیش از پیش نمایان می سازد.
 
 
 
کلمات کلیدی:

پایگاه داده

خوشه بندی

روشهای داده‌کاوی

تخمین ارزش اطلاعات

کشف دانش و داده کاوی

 
 
 
 

سابقه داده کاوی

داده کاوی و کشف دانش در پایگاه داده ها از جمله موضوع هایی هستند که همزمان با ایجاد و استفاده از پایگاه داده ها در اوایل دهه 80 برای جستجوی دانش در داده ها شکل گرفت.شاید بتوان لوول (1983) را اولین شخصی دانست که گزارشی در مورد داده کاوی تحت عنوان « شبیه سازی فعالیت داده کاوی » ارائه نمود. همزمان با او پژوهشگران و متخصصان  علوم رایانه، آمار، هوش مصنوعی، یادگیری ماشین و . . . نیز به پژوهش در این زمینه و زمینه های مرتبط با آن پرداخته اند.پژوهش جدی روی موضوع داده کاوی از اوایل دهه 90 شروع شد. پژوهش ها و مطالعه های زیادی در این زمینه صورت گرفته، همچنین سمینارها، دوره های آموزشی و کنفرانس هایی نیز  برگزار شده است.
 
 نتایج پایه های نظری داده کاوی در تعدادی از مقاله های پژوهشی آورده شده است. مثلاً سال 1991 پیاتتسکی و شاپیرو  استقلال آماری قاعده ها در داده کاوی ا بررسی نموده اند. 1995 هافمن و نش استفاده از داده کاوی و داده انبار  توسط بانک های آمریکا را بررسی نموده و بیان کردند که چگونه این سیستم ها برای بانک های آمریکا قدرت رقابت بیشتری ایجاد می کنند. چت فیلد مشکلات ایجاد شده توسط داده کاوی را بررسی نمود و همچنین مقاله ای تحت عنوان « مدل های خطی غیر دقیق داده کاوی و استنباط آماری » ارایه نمود. هندری نیز دیدگاه اقتصاد سنجی روی داده کاوی را تهیه کرد. در این سال انجمن داده کاوی همزمان با اولین کنفرانس بین المللی «کشف دانش و داده کاوی» شروع به کار کرد. این کنفرانس توسعه یافته چهار دوره آموزشی بین المللی در پایگاه های داده درسال 1989 تا 1994 بود. انجمن مذکور، یک سازمان علمی به نام   ACM- SIGKDD را ایجاد نمود. سال 1996 ایمیلنسکی  و منیلا  دیدگاهی از داده کاوی به عنوان    «پرس و جو کننده از پایگاه های استنتاجی » را پیشنهاد کردند. فایاد، پیاتتسکی – شاپیرو، اودوراُسامی پیشرفت های کشف دانش و داده کاوی را عنوان کردند. در سال 1997 منیلا خلاصه ای از مطالعه روی اساس داده کاوی ارایه نمود. باربارا و همکاران نیز دیدگاه کاهش داده ها روی داده کاوی را در گزارش کاهش داده های نیوجرسی ارایه نمودند.
 
 
 
فهرست مطالب
مقدمه 1

فصل اول 9 1-1) داده کاوی و دلایل پیدایش آن10

2-1) پردازش اطلاعات، از فایلهای متنی  تا داده کاوی11
3-1) جایگاه داده کاوی12
4-1) مراحل یک فرآیند داده کاوی13
5-1)پایه های یک فرآیند داده کاوی13
6-1)خلاصه مطالب14
 
فصل دوم15

1-2) کاربردهای داده کاوی16

2-2) تکنیکهای داده کاوی20
3-2)درخت تصمیم – ابزار دسته بندی21
4-2)قوانین تداعی (انجمنی) 23
 
فصل سوم25

1-3) خوشه بندی 26

2-3)خوشه بندی سلسله مراتبی 28
3-3)انواع خطا در تشخیص ناهمگونی33
4-3)داده کاوی توزیع شده34
5-3)تکنیکها و رویکردها در داده کاوی توزیع شده36
 
فصل چهارم38

1-4) فناوری اطلاعات چیست؟39

2-4) زمینه‌های فناوری اطلاعات42
3-4)فناوری اطلاعات در دانشگاه‌های ایران42
 
فصل پنجم44  

1-5) اطلاعات چیست؟45

2-5) مسئلة و هدف پژوهش48
3-5)روش و گام‌های تحقیق49
4-5)ارزش اطلاعات نمونه در تصمیم‌گیری50
5-5)توسعة مدل51
6-5) روش آزمون مدل54
7-5)کاربرد‌های مدل60
8-5) راهکاری برای یافتن بهترین ترکیب ارزش اطلاعات61
نتیجه گیری 64
منابع و مراجع  65
 

دانلود پروژه و پایان نامه مهندسی کامپیوتر و آی تی با عنوان ارائه مدلی جهت تخمین ارزش اطلاعات با استفاده از روشهای داده‌کاوی

خوشه بندی (Clustering)

خوشه بندی (Clustering)

خوشه بندی چیست؟ خوشه بندی چیست؟ دانلود مقالات هوش مصنوعی دانلود مقالات یادگیری ماشین سیستم همکاری در فروش فایلینا

دانلود خوشه بندی (Clustering)

خوشه بندی (Clustering)
خوشه بندی
Clustering
خوشه بندی 
خوشه بندی  چیست؟
خوشه بندی چیست؟
دانلود مقالات هوش مصنوعی
دانلود مقالات یادگیری ماشین
سیستم همکاری در فروش فایلینا
همکاری در فروش فایل
همکاری در فروش
فروش فایل
انجام پروژه و پایان نامه
fileina
دسته بندی هوش مصنوعی
فرمت فایل doc
حجم فایل 391 کیلو بایت
تعداد صفحات فایل 32

خوشه بندی (Clustering)

 
 
 

خوشه بندی 

چکیده
امروزه خوشه‌بندی به عنوان یک روش یادگیری بدون ناظر در کاربردهای بسیاری توانسته است ارزش خود را نشان دهد. در این مجموعه سعی شده تا حد امکان مطالب پایه‌ایِ خوشه‌بندی و مسائل مربوط به آن بیان شود. همچنین سعی شده است تا چندین روش و تکنیک مختلف و رایجِ خوشه بندی تشریح شود و ویژگی‌های هر یک بیان گردد. برای ارزیابی، سنجش و اعتبارسنجی خوشه‌های تولید شده که خود یکی از مسائل مهم و قابل گسترش در باب خوشه‌بندی است.
 
 خوشه‌بندی را می‌توان به عنوان مهمترین مسئله در یادگیری بدون نظارت در نظر گرفت. خوشه‌بندی با یافتن یک ساختار درون یک مجموعه از داده‌های بدون برچسب درگیر است. خوشه‌ به مجموعه‌ای از داده‌ها گفته می‌شود که به هم شباهتداشته باشند. در خوشه‌بندی سعی می‌شود تا دادهها به خوشه‌هایی تقسیم شوند که شباهت بین داده‌های درون هر خوشه حداکثر و شباهت بین داده‌های درون خوشه‌های متفاوت حداقل شود.
 
 
 
 
 
کلمات کلیدی:

خوشه بندی

Clustering

یادگیری بدون ناظر

یادگیری ماشین

 
 
 
 

 روش‌های خوشه‌بندی

روش‌های خوشه‌بندی را می‌توان از چندین جنبه تقسیم‌بندی کرد:
 

1-    خوشه‌بندی انحصاری (Exclusive or Hard Clustering) وخوشه‌بندی با هم‌پوشی (Overlapping or Soft Clustering)

در روش خوشه‌بندی انحصاری پس از خوشه‌بندی هر داده دقیقأ به یک خوشه تعلق می‌گیرد مانند روش خوشه‌بندی K-Means. ولی در خوشه‌بندی با همپوشی پساز خوشه‌بندی به هر داده یک درجه تعلق بازاء هر خوشه نسبت داده می‌شود. به عبارتی یک داده می‌تواند با نسبتهای متفاوتی به چندین خوشه تعلق داشته باشد. نمونه‌ای از آن خوشه‌بندی فازی است. 
 

2-      خوشه‌بندی سلسله مراتبی (Hierarchical) و خوشه‌بندی مسطح(Flat)

در روش خوشه بندی سلسله مراتبی، به خوشه‌های نهایی بر اساس میزان عمومیت آنها  ساختاری سلسله‌ مراتبی نسبت داده می‌شود. مانند روش Single Link. ولی در خوشه‌بندی مسطح تمامی خوشه‌های نهایی دارای یک میزان عمومیت هستند مانند K-Means. به ساختار سلسله مراتبی حاصل از روشهای خوشه‌بندی سلسله مراتبی دندوگرام (Dendogram) گفته می‌شود.
با توجه با اینکه روش‌های خوشه‌بندی سلسله مراتبی اطلاعات بیشتر و دقیق‌تری تولید می‌کنند برای تحلیل داده‌های با جزئیات پیشنهاد می‌شوند ولی از طرفی چون پیچیدگی محاسباتی بالایی دارند برای مجموعه داده‌های بزرگ روش‌های خوشه‌بندی مسطح پیشنهاد می‌شوند.
 
 
 
 
 
 
 
فهرست مطالب
مقدمه‌ای بر خوشه‌بندی
خوشه‌بندی در مقابل طبقه‌‌بندی

یادگیری با نظارت در مقابل یادگیری بدون نظارت

کاربردها
مسائل درگیر با روش‌های خوشه‌بندی

خوشه‌بندی در مقابل چندی ‌سازی برداری

روش‌های خوشه‌بندی
روشهای خوشه‌بندی سلسله مراتبی
خوشه‌بندی با روش Single-Link
خوشه‌بندی با روش Complete-Link
خوشه‌بندی با روش Average-Link
دیگر روشهای خوشه بندی سلسله مراتبی
الگوریتم خوشه‌بندی پایین به بالای عمومی
روش خوشه‌بندی K-Means
خوشه‌بندی بر اساس چگالی
بررسی روشهای اعتبارسنجی خوشه‌ها
خلاصه و نتیجه‌گیری
منابع
 

دانلود خوشه بندی (Clustering)

خوشه بندی فازی (Fuzzy Clustering)

خوشه بندی  چیست؟

خوشه بندی یکی از شاخه های یادگیری بدون نظارت می باشد و فرآیند خودکاری است که در طی آن، نمونه ها به دسته هایی که اعضای آن مشابه یکدیگر می با¬شند تقسیم می شوند که به این دسته ها خوشه  گفته می¬شود. بنابراین خوشه مجموعه ای از اشیاء می باشد که در آن اشیاء با یکدیگر مشابه بوده و با اشیاء موجود در خوشه های دیگر غیر مشابه می باشند. برای مشابه بودن می توان معیارهای مختلفی را در نظر گرفت مثلا می توان معیار فاصله را برای خوشه بندی مورد استفاده قرار داد و اشیائی را که به یکدیگر نزدیکتر هستند را بعنوان یک خوشه در نظر گرفت که به این نوع خوشه بندی، خوشه بندی مبتنی بر فاصله  نیز گفته می شود.

  ادامه مطلب ...

خوشه بندی (Clustering)

چکیده
امروزه خوشه‌بندی به عنوان یک روش یادگیری بدون ناظر در کاربردهای بسیاری توانسته است ارزش خود را نشان دهد. در این مجموعه سعی شده تا حد امکان مطالب پایه‌ایِ خوشه‌بندی و مسائل مربوط به آن بیان شود. همچنین سعی شده است تا چندین روش و تکنیک مختلف و رایجِ خوشه بندی تشریح شود و ویژگی‌های هر یک بیان گردد. برای ارزیابی، سنجش و اعتبارسنجی خوشه‌های تولید شده که خود یکی از مسائل مهم و قابل گسترش در باب خوشه‌بندی است.
 

  ادامه مطلب ...