دانلود مقاله رشته مهندسی نرم افزار با عنوان داده کاوه

مقاله رشته مهندسی نرم افزار با عنوان داده کاوه

در داده کاوی معمولا به کشف الگوهای مفید از میان داده ها اشاره می شود منظور از الگوی مفید ، مدلی در داده ها است که ارتباط میان یک زیر مجموعه از داده ها را توصیف می کند و معتبر ، ساده ، قابل فهم و جدید است

دانلود مقاله رشته مهندسی نرم افزار با عنوان داده کاوه

داده کاوی
DATA MINING
استخراج اطلاعات
دسته بندی داده ها
فرآیند و مراحل داده کاوی
تفاوت داده کاوی و آنالیز های آماری
دانلود مقاله رشته مهندسی نرم افزار با عنوان داده کاوه
سیستم همکاری در فروش فایل
همکاری در فروش فایل
فروش فایل
خرید مقاله و تحقیق رشته نرم افزار
fileina
فروشگاه ساز فایل
فروشگاه فایل
دسته بندی کامپیوتر و IT
فرمت فایل doc
حجم فایل 904 کیلو بایت
تعداد صفحات فایل 21

مقاله رشته مهندسی نرم افزار با عنوان داده کاوه

 

*یک PDF با 31 صفحه بصورت رایگان ضمیمه شده است:)
 
مقدمه
 از سال 1950 به بعد که رایانه ، در تحلیل و ذخیره سازی داده ها به کار رفت ، حجم اطلاعات ذخیره شده درآن پس از حدود 20 سال دو برابر شد و همزمان  با پیشرفت فناوری اطلاعات ، حجم داده ها در پایگاه داده ها هر دو سال یک بار ، دو برابر شد و همچنان  باسرعت بیش تری نسبت به گذشته حجم اطلاعات  ذخیره شده بیش تروبیش تر می شود . با وجود شبکه جهانی وب ، سیستم  های یکپارچه اطلاعاتی ، سیستم های یکپارچه بانکی ، تجارت الکترونیکی و ... لحظه به لحظه به حجم داده ها  در پایگاه داده ها اضافه شده و باعث به وجود آمدن انبارهای ( توده های ) عظیمی از داده ها شده است ، به طوری که ضرورت کشف و استخراج سریع و دقیق دانش از این پایگاه داده ها را بیش از پیش نمایان کرده است .
 
      شدت رقابت ها  در عرصه های علمی ، اجتماعی ، اقتصادی ، سیاسی و نظامی نیز اهمیت سرعت یا زمان دسترسی به اطلاعات را دو چندان کرده است . بنا براین نیاز به طراحی سیستم هایی که قادر به اکتشاف سریع اطلاعات مورد علاقه کاربران با تاکید بر حداقل مداخله انسانی باشند از یک سو و روی آوردن به روش های تحلیل متناسب با حجم داده های حجیم ازسوی دیگر ، به خوبــــــی احســاس می شود . در حال حاضر ، داده کاوی مهم ترین فناوری برای بهره وری موثر ، صحیح و سریع ازداده های حجیم است و اهمیت آن رو به فزونی است
داده کاوی پل ارتباطی میان علم آمار ، علم کامپیوتر ، هوش مصنوعی ، الگوشناسی ، فراگیری ماشین داده می باشد.  داده کاوی فرآیندی پیچیده جهت شناسایی الگوها و مدل های صحیح، جدید و به صورت بالقوه مفید، در حجم وسیعی از داده می باشد، به طریقی که این الگو ها و مدلها برای انسانها قابل درک باشند.
 
داده کاوی به صورت یک محصول قابل خریداری نمی باشد، بلکه یک رشته علمی و فرآیندی است که بایستی به صورت یک پروژه پیاده سازی شود.داده ها اغلب حجیم می باشند و به تنهایی قابل استفاده نیستند،اما دانش نهفته در داده ها قابل استفاده می باشد.بنابراین بهره گیری از قدرت فرآیند داده کاوی جهت شناسایی الگوها و مدلها و نیز ارتباط عناصر مختلف در پایگاه داده جهت کشف دانش نهفته در داده ها و نهایتا تبدیل داده به اطلاعات، روز به روز ضروری تر می شود.در داده کاوی معمولا به کشف الگوهای مفید از میان داده ها اشاره می شود . منظور از الگوی مفید ، مدلی در داده ها است که ارتباط میان یک زیر مجموعه از داده ها را توصیف می کند و معتبر ، ساده ، قابل فهم و جدید است .
 
 
 
کلمات کلیدی:

داده کاوی

DATA MINING

استخراج اطلاعات

دسته بندی داده ها

فرآیند و مراحل داده کاوی

تفاوت داده کاوی و آنالیز های آماری

 
 
 
تاریخچه 
     با توجه به وجود اطلاعات ارزشمند در پایگاه های  داده ای در اواخر دهه 80 میلادی ، تلاش برای استخراج و استفاده از اطلاعات پایگاه های  داده ای شروع شد . داده کاوی فرایندی است که در آغاز دهه 90 پا به عرصه ظهور گذاشته و با نگرشی نو ، به مسئله استخراج اطلاعــات از پایگـــاه داده ها می پردازد . در سال 1989 و 1991 کارگاه های کشف دانش از پایگاه داده ها توسط پیاتتسکی و همکارانش  و در فاصله سال های 1991 تا 1994 کارگاه های فوق ، توسط فایاد و پیا تتسکی و دیگران برگزار شد .
 
به طور رسمی اصطلاح داده کاوی برای اولین بار توسط « فیاض »  در اولیـن کنفرانس بین المللی « کشف دانش و داده کاوی »  در سال 1995 مطرح شد . از سال 1995 داده کاوی به صورت جدی وارد مباحث آمار شد.و در سال 1996 ، اولین شماره مجله کشف دانش از پایگاه داده ها منتشر شد .امروزه کنفرانس های مختلفی دراین زمینه در سراسر دنیا برگزار می شود . داده کاوی حاصل تحول تدریجی در طول تاریخ بوده و از اوایل دهه 90 همزمان با همه گیر شدن استفاده از پایگاه های داده ای به عنوان یک علم مطرح شده است. 
 
 
 

دانلود مقاله رشته مهندسی نرم افزار با عنوان داده کاوه

دانلود پایان نامه کارشناسی ارشد داده کاوی،ترتیب و گروه سازی داده ها با استفاده از روش ماشین‎های بردار پشتیبان (SVM)

پایان نامه کارشناسی ارشد مهندسی نرم افزار با عنوان داده کاوی،ترتیب و گروه سازی داده ها با استفاده از روش ماشین‎های بردار پشتیبان (SVM)

دسته بندی داده ها، از مهمترین مباحث مطرح در داده کاوی است در خصوص دسته بندی داده ها روش های گوناگونی ارائه گردیده است که ماشین بردار پشتیبان(SVM) از مهمترین آنها است

دانلود پایان نامه کارشناسی ارشد مهندسی نرم افزار با عنوان داده کاوی،ترتیب و گروه سازی داده ها با استفاده از روش ماشین‎های بردار پشتیبان (SVM)

داده کاوی
دانلود پایان نامه دسته بندی داده ها با استفاده از روش ماشین‎های بردار پشتیبان
ماشینهای بردار پشتیبان
دانلود پایان نامه کارشناسی ارشد مهندسی نرم افزار 
دانلود پایان نامه ارشد مهندسی نرم افزار
دانلود پایان نامه مرتب سازی داده ها با استفاده از SVM
دسته بندی مهندسی نرم افزار
فرمت فایل doc
حجم فایل 750 کیلو بایت
تعداد صفحات فایل 147

پایان نامه کارشناسی ارشد مهندسی نرم افزار با عنوان

داده کاوی،ترتیب و گروه سازی داده ها با استفاده از روش ماشین‎های بردار پشتیبان (SVM)

 
چکیده:
داده کاوی یکی از شاخه های مطرح علمی است که در سالهای اخیر توسعه فراوانی یافته است. بنابر گزارش دانشگاه MIT، دانش نوین داده کاوی یکی از ده دانش در حال توسعه ای است که دهه آینده را با انقلاب تکنولوژیکی مواجه می سازد. دسته بندی داده ها، از مهمترین مباحث مطرح در داده کاوی است. در خصوص دسته بندی داده ها روش های گوناگونی ارائه گردیده است که ماشین بردار پشتیبان(SVM) از مهمترین آنها است و از آنجایی که بر مبنای فرمول-بندی ریاضیاتی است از دقت و خاصیت تعمیم بیشتری نسبت به سایر روش های دسته بندی برخوردار است. این پایان نامه به داده کاوی،ترتیب و گروه سازی داده ها با استفاده از روش ماشین‎های بردار پشتیبان (SVM)می پردازد. 
 
ابتدا مقدمه و برخی از مباحث مورد نیاز در SVM مطرح می گردد. سپس اصول و پایه های دسته بندی داده های دو دسته ای به روش SVM مطرح می گردد و همچنین انواع روش-های SVM به همراه مثال ارائه می گردد. بعلاوه یک مثال واقعی از کاربرد روش SVM در دسته بندی داده های دو دسته ای ارائه خواهد شد. در ادامه نیز برخی از روش های دسته بندی برای داده های چند دسته ای مطرح می گردد. درپایان با ورود به بحث نادقیقی داده ها، و در نظر گرفتن دو حالت برای داده های فازی، روش هایی برای دسته بندی این داده ها عنوان می گردد.  بعلاوه با درنظر گرفتن یک پارامتر فازی در فرمول بندی روش SVM به ارائه راه حل پرداخته می شود. در خاتمه یک مثال کاربردی برای داده های فازی مطرح می گردد. ضمنا بخش هایی که با علامت * مشخص شده است حاصل پژوهش های مولف می باشد.
 
 
کلمات کلیدی:

SVM

داده کاوی

دسته بندی داده ها

ماشین‎های بردار پشتیبان

 
 
 

تاریخچه داده کاوی 

در طول دهه های گذشته با پیشرفت روز افزون کاربرد پایگاه داده ها ، حجم داده های ثبت شده بطور متوسط هر پنج سال دو برابر می شود. در این میان سازمان هایی موفق هستند که بتوانند حداقل 7% داده هایشان را تحلیل کنند. تحقیقات انجام یافته نشان می دهد که سازمان ها کمتر از 1%  داده هایشان را تحلیل می کنند. به عبارت دیگر در حالی که غرق در اطلاعات می-باشند، تشنه دانش هستند[50].بنابر گزارش دانشگاه MIT دانش نوین داده کاوی یکی از ده دانش در حال توسعه ای است که دهه آینده را با انقلاب تکنولوژیکی مواجه می سازد. این تکنولوژی، امروزه دارای کاربردهای وسیعی در حوزه های مختلف است، به گونه ای که امروزه حد و مرزی برای کاربرد این دانش درنظر نگرفته و زمینه های کاری این دانش را از ذرات کف اقیانوس ها تا اعماق فضا می دانند [50].
 
مفهوم داده کاوی برای نخستین بار در سال 1989 و در کنار کنفرانس هوش مصنوعی  توسط پیاتتسکی شاپیرو  و در شهر دترویت  معرفی شد. در سال 1991 نیز کارگاه های کشف دانش  از پایگاه داده ها، توسط پیاتتسکی و همکارانش برگزار گردید. همچنین در فاصله سال-های 1991 تا 1994 کارگاه هایی در این خصوص توسط فیاد  و دیگران برگزار شد و در سال 1996 اولین شماره مجله کشف دانش از پایگاه داده ها  منتشر شد. از آن زمان تاکنون کنفرانس های سالانه منظمی در خصوص داده کاوی و کشف دانش برگزار گردیده است. دانش داده کاوی که نام آن از استخراج معدن گرفته شده است با زدودن متعلقات غیرضروری داده ها و استخراج روابط سودمند از آنها، روابط پیچیده بین داده ها را آشکار کرده و راه را جهت تصمیم گیری هموار    می سازد.
 
 
 
 
فهرست مطالب
1-فصل اول:مقدمه و پیشنیازها     .1
1-1 مقدمه    2
1-1-1 تاریخچه داده-کاوی           .2
1-1-2 تعریف داده-کاوی            2

1-1-3 کاربردهای داده-کاوی         .3 

1-1-4 دسته بندی داده-ها             .4
1-2  مطالبی از مطالبی از حساب دیفرانسیل، جبرخطی و تحقیق در عملیات  5 

1-3 نظریه مجموعه های فازی         10

1-4 مطالبی از نظریه بازی-ها          13
1-4-1 تاریخچه نظریه بازی          13
1-4-2 نظریه بازی-ها               .14
1-4-3 بازی های ماتریسی           .17
 

2- فصل  دوم:روش SVM برای دسته بندی داده های دو دسته ای  20

2-1 مقدمه   21
2-2 روش ابتدایی SVM برای دسته بندی داده های دودسته ای جدایی پذیر خطی          21
2-3 روش SVM بر اساس نرم L1 برای دسته بندی داده های دودسته-ای                .30
2-4 روش SVM بر اساس فرم L2 برای دسته بندی داده های دودسته ای                 38
2-5 روش MCQP: مدل جدیدی برای دسته بندی داده های دو دسته ای بر مبنای روش  SVM  .43
2-6 روش SVM استاندارد          54
2-7 پیش بینی بحران مالی در شرکت های پذیرفته شده در بورس اوراق بهادار تهران بوسیله روش MCQP       59
 

3-فصل سوم:روش SVM  برای دسته بندی داده های چند دسته-ای 63

3-1 مقدمه   64
3-2 روش OSVM برای دسته بندی داده های چند دسته-ای      .64
3-3 روش PSVM برای دسته بندی داده های چند دسته-ای       68
3-4 روش LP- PSVM برای دسته بندی داده های چند دسته-ای  .72
3-5 روشی برای تصمیم گیری در مورد داده های دسته بندی نشده  .75
 

4-فصل چهارم:روش SVM برای دسته بندی داده های فازی        .78

4-1 مقدمه   79
4-2 روش  FSVM بر اساس نرم L1 برای دست بندی داده های دو دسته-ای             .80
4-3 روش FMCQP برای دسته بندی داده های دو دسته-ای      .84
4-4 روش FSVM استاندارد برای دسته بندی داده های دو دسته-ای 88
4-5 روش SVM برای دسته بندی داده های فازی دو دسته ای جدایی پذیر خطی           .92
4-6: روش L1_SVM برای دسته بندی داده های فازی         .95
4-7 روش L1_SVM با ضریب اهمیت فازی برای خطای دسته بندی داده-ها             .97
4-8 پیش بینی بحران مالی درشرکت های پذیرفته شده در بورس اوراق بهادار تهران بوسیله روش FMCQP    .101
نتیجه گیری و فعالیت های پیش-رو     .104
 
مراجع     .108
ضمیمه 1   .110
ضمیمه 2   .122
ضمیمه 3   .123
واژه نامه فارسی به انگلیسی          125
واژه نامه انگلیسی به فارسی          130
 
 
 
 
 
 
 

دانلود پایان نامه کارشناسی ارشد مهندسی نرم افزار با عنوان داده کاوی،ترتیب و گروه سازی داده ها با استفاده از روش ماشین‎های بردار پشتیبان (SVM)