دانلود ساخت قطعات چدنی به روش متالورژی پودر

سمینار مواد ساخت قطعات چدنی به روش متالورژی پودر

سمینار مواد ساخت قطعات چدنی به روش متالورژی پودر

دانلود سمینار مواد ساخت قطعات چدنی به روش متالورژی پودر

سمینار مواد ساخت قطعات چدنی به روش متالورژی پودر
دسته بندی سمینار
فرمت فایل pdf
حجم فایل 515 کیلو بایت
تعداد صفحات فایل 36

سمینار مواد ساخت قطعات چدنی به روش متالورژی پودر

مقدمه : 

چدنها آلیاژهایی از آهن – کربن – سلیسیوم است و به صورت حالت ریختگی یا پس از عملیات حرارتی کاربرد دارد و

مجموعه متنوعی از قیمت پائین تمام شده توام با قابلیت ریختگری ، استحکام ، قابلیت ماشینکاری،

سختی ، مقاومت در برابر سایش ، مقاومت در مقابل خوردگی ، انتقال حرارت و جذب ارتعاش در این

آلیاژ آنرا از سایر آلیاژهای ریختگی متمایز ساخته است .

ساختار میکروسکوپی و خواص چدن همچنین متفاوت از فولاد است ، در حین انجماد کربن اضافی

طی واکنش یوتکتیک به صورت فاز پایدار ترمودینامیک گرافیت ( چدن خاکستری) و یا فاز ناپایدار

سمنانیت ( چدن خالدار یا چدن سفید ) رسوب می کند.

تشکیل فاز پایدار یا ناپایدار به طبیعت و عملیات انجام شده روی مایع ، به ویژه توانایی گرافیت زایی ،

عمل جوانه زنی و سرعت خنک شدن بستگی دارد . سیلیسیم پتانسیل گرافیت زایی را به شدت افزایش

میدهد و در چدنهای خاکستری همواره در غلظت بالایی موجود است . 

گرافیت زایی :

همانطور که میدانیم وجود گرافیت با اشکال ظاهری مختلف و یا فاز سمانیت در چدن خالدار یا سفید

معمول می باشد و عوامل خاصی بر میزان ازدیاد یا کاهش گرافیت در ساختار چدن های گرافیتی موثر

می باشد .

پتانسیل گرافیت زایی مذاب چدن مالیبل با اضافه کردن مقادیری جزئی از عناصر Bi , Te کاهش میابد

لذا افزودن این عناصر به مقدار کم به مذاب چدن مالیبل اجازه می دهند که قطعات ضخیم به صورت

سفید ریخته شوند پیش از آن که با عملیات حرارتی گرافیت زایی شوند.

-انواع چدنها:

 عمومی چدن

این چدنها جزء بزرگترین گروه آلیاژهای ریختگی بوده و بر اساس شکل گرافیت به انواع گرافیت لایه ای

، مالیبل ، کروی و فشرده تقسیم بندی میشوند . همانطور که میدانیم انواع چدنها با توجه به نوع

گرافیت دارای خواص مختلفند که بر این اساس کاربردهای متفاوتی دارند که در قسمتهای آینده در این

مورد توضیحاتی داده می شود .

چدنهای خاکستری ورقه ای:

چدن های خاکستری جزو مهمترین چدنهای مهندسی هستند که کاربردهای زیاد دارند. نام این چدنها

از خصوصیات رنگ خاکستری سطح مقطع شکست آن و شکل گرافیت مشتق می شود ، آنها نسبتا ارزان

و تولیدشان آسان است زیرا در مقایسه با دیگر چدنها از تلرانس ترکیبی که به سهولت تهیه میشوند دارا

بوده و مسایل و مشکلات تغذیهای و انقباض نداشته و تدارک قالب های آن نیز به درستی انجام شده و

قطعات تولیدی از این چدن ها به سهولت ماشین کاری و سطح تمام شده ماشینکاری آنها نیز مقاوم در

برابر ماشین از نوع لغزشی است این چدنها ضریب هدایت گرمایی بالایی داشته ولی الاستیسیته و قابلیت

تحمل شوک های حرارتی کمی دارند.

این خواص آنها را برای ریختگی هایی که در معرض تنشهای حرارتی محلی یا تکرار تنش ها هستند

مناسب می سازد .

دانلود سمینار مواد ساخت قطعات چدنی به روش متالورژی پودر

دانلود مقاله بررسی کاربرد ریخته گری در سیستم های اندازه گیری(متالورژی پودر)

بررسی کاربرد ریخته گری در سیستم های اندازه گیری(متالورژی پودر)

مقاله بررسی کاربرد ریخته گری در سیستم های اندازه گیری(متالورژی پودر)در 86 صفحه ورد قابل ویرایش

دانلود بررسی کاربرد ریخته گری در سیستم های اندازه گیری(متالورژی پودر)

تحقیق بررسی کاربرد ریخته گری در سیستم های اندازه گیری(متالورژی پودر)
پروژه بررسی کاربرد ریخته گری در سیستم های اندازه گیری(متالورژی پودر)
مقاله بررسی کاربرد ریخته گری در سیستم های اندازه گیری(متالورژی پودر)
دانلود تحقیق بررسی کاربرد ریخته گری در سیستم های اندازه گیری(متالورژی پودر)
پروژه
پژوهش
مقاله
جزوه
تحقیق
دانلود پروژه
دانلود پژوهش
دسته بندی فنی و مهندسی
فرمت فایل doc
حجم فایل 1124 کیلو بایت
تعداد صفحات فایل 86

بررسی کاربرد ریخته گری در سیستم های اندازه گیری(متالورژی پودر)



ریخته گری و متالوژی پودر:

مقدمه: ریخته گری در اشکال مختلف آن یکی از مهمترین فرایندهای شکل دهی فلزات می باشد. گرچه روش ریخته گری ماسه ای یک فرایند متنوع بوده و قادر به تولید ریخته با اشکال پیچیده از محدوده زیادی از فلزات می باشد، ولی دقت ابعادی و تشکیل سطح مختلف ساخته شده به این روش نسبتاً ضعیف می باشد. علاوه بر این ریخته گری ماسه ای عموماً برای حجم تولید بالا مناسب نمی باشد. به ویژه در جایی که ریخته ها احتیاج به جزئیات دقیق دارد، جهت از بین بردن این محدودیت ها فرایندهای ریخته‌گری دیگری که هزینه تولید کمتری هم دارند به وجود آمده اند، این روش شامل:

(i) قالب گیری پوسته‌ای

( ii ) قالب‌گیری بسته‌ای

(iii ) دای کاست یا ( ریخته گری حدیده ای که علاوه برفرآیندهای ریخته گری شکل دهی قطعات با استفاده از پودرهای فلزی نیز شامل این فصل می باشد.

 قالب گیری پوسته ای: این فرآیند را می توان به عنوان فرآیند گسترش داده شده ریخته گری ماسه ای دانست. اصولاً این روش از 2 نیمه مصرف شدنی قالب یا پوسته قالب از ماسه مخلوط شده با یک چسب مناسب جهت ایجاد استحکام در برابر وزن فلز ریخته شده، پخته شده است تشکیل می شود.


شکل دهی پوسته:

برای تشکیل پوسته ابتدا یک نیم الگوی فلزی ساخته می شود که معمولاً از جنس فولاد یا برنج می باشد و به صفحه الگو چسبانده می شود. یک الگوی راه گاه بر روی این صفحه تعبیه می شود. بر روی الگو یک زاویه 1 تا 2 درجه برای راحت جدا شدن ایجاد می شود. همچنین بر روی صفحه الگو دستگیره هایی برای جدا کردن صفحات ایجاد می شود.

پخت جزعی: این مجموعه تا درجه حرارت  در کوره یا توسط هیترهای مقاوم الکتریکی که در داخل الگو نصب شده اند گرم می شوند. از هر کدام از روشهای حرارت دهی که استفاده شده باشد صفحه الگو به جعبه های ماسه مخلوط شود. با چسب تر متوسط متصل می شود این جعبه سپس وارونه شده تا مخلوط ماسه و چسب بر روی الگوی حرارت دیده ریخته شود تا رزین یا چسب ذوب شده و باعث چسبیدن ماسه شود. پس از 10 تا 20 ثانیه را برگردانده تا یک لایه ( حدوداً  نیمه پخته شده پوسته که به الگو چسبیده باقی بماند.

 پخت نهایی و ریزش:

مجموعه صفحه الگو به همراه پوسته به داخل کوره براه شده تا پخته نهایی در درجه حرارت 300 الی  در مدت زمان 1 الی 5 دقیقه صورت گیرد. زمان و درجه حرارت دقیق جهت این کار بستگی به نوع رزین مصرف شده دارد. پس از پخت پوسته از صفحه الگو جدا می شود هر دوی پوسته ها به این روش ساخته می شود. و قالب به هم چسباندن 2 نیمه توسط چسب یا کلمپ یا پیچ کامل می شود.




 


قالب همگون آماده ریختن می باشد. در جاهایی که احتیاج به قسمتهای تو خالی
می باشد. فنری قرار داده می شود و این ماسه مشابه روش ریخته گری ماسه ای انجام
نمی شود. مراحل ساخت یک پوسته قالب در شکل (1. 2) نشان داده شده است.

مراحل تهیه و ساخت قالب گری پوسته ای:

در مقایسه با روش ریخته گری ماسه ای قالب گیری پوسته ای دارای مزایای زیر
می باشد:

a) دقت ابعادی بهتر یا تلرانس (  ).

b) تکمیل سطح بهتر یا قابلیت دوباره تولید جزئیات دقیق تر.

c) این فرآیند جهت کارکردهای غیر ماهر یا با مهارت کم می توانند استفاده کنند.

اشکال این روش قسمت بالای الگوها و ماسه قالب گیری آنها می باشد. ( هر چند ) چون فرآیند نیمه مکانیزه می باشد زمان تولید یک پوسته قالب در مقایسه با ساخت یک قالب برای ریخته گری ماسه ای به صورت قالب ملاحظه ای کمتر می باشد. بنابراین این فرآیند جهت تولید ریخته  اثر بالا که هزینه های اولیه در آن قابل جبران می باشد مناسب می باشد.

 قالب گیری Invesment )   (بسته‌ای)

این روش ریخته گری قدمتی مانند ریخته گری ماسه ای دارد توسط قدیمیان جهت ساخت قطعات با جزئیات دقیق مانند دسته شمشیر و جواهرات مورد استفاده قرار گرفته است. در طول قرن ها این فرآیند محدود شده بود به مجسمه های برنزی و به درستی تنی فرآیندی است که امروزه در این حرفه مورد استفاده قرار می گیرد در پانزده سال اولیه این قرن بوده که قالب گیری Invesmemt جهت فرآیندهای صنعتی به ویژه در جابه جائی که ریخته ها با دقت ابعادی و تکمیل سطح بالا مورد نیاز است مناسب تشخیص داده شده.

اساساً رویه فوم از مراحل ساختن و شکل دادن تشکیل شده است که از مواد نسوز (مقاوم در مقابل حوادث ) برای شکل دادن قالب پوشانده می شود.

وقتی پوشانده سخت می شود فوم مذاب از حفره های قالب بیرون زده و از آهن مذاب پر می شود. زمانی که آهن مذاب به درجه انجماد رسید و قالب نسوز شکسته
 شد، چدن ریخته گری ظاهر می شود.

I) مدل ساخته می شود.  II) مدل پوشانده می شود. III ) آهن ریخته گری می شود.

ساختن مدل

برای رویه فوم به یک قالب دو نیمه ای لازم است که اساساً از یک یا دو روش زیر ساخته می شود.

1) زمانیکه انتظار دوام طولانی داشته باشیم، قالبها معمولاً از آهن، استیل، برنج، آلومینیوم ساخته می شوند. شکل معکوس قالب را در فلز تراش داده و آن را برای راحتی انقباض مقداری بزرگ می سازند، که مقدار دقت و مهارت در این مرحله خیلی بالاست. دقیقاً مانند مرحله ساخت قالبهای پلاستکی.




 


2) اگر دوام قالب مهم نباشد. از قالبهای ارزانی که با آلیاژ های نقطه ذوب پائین ساخته شده استفاده می شود. مراحل در شکل (2-2) نشان داده شده است.


اولین لازمه قالب اصلی است که از برنج یا استیل ساخته شده است که از سطح صاف و صیقلی ساخته شده، برای انقباض موم مقداری اندازه آن را بزرگ می سازند. شکل تا

عمق نصف قالب داخل ماسه فرو می رود و قالب استیلی دور بقیه شکل قرار داده میشود و با آلیاژهای بانقطه ذوب پائین 19 درجه سانتیگراد پر میشود.

پس از انجماد شدن آلیاژ دو نیمه قالب از هم جدا می شود و ماسه اطراف آن عوض میشود با همان آلیاژ نقطه ذوب پائین مانند قبل.

هر کدام از روشهای ساخت نوع قالب استفاده شده را معین می کند. و پس از انتخاب موم گداخته شده را داخل آن تزریق می کنیم و آن را مونتاژ می کنیم. بعد از انجماد موم قالب را دو نیمه کرده و موم شکل گرفته را از آن خارج می کنیم.





 

 

پوشاندن مدل:

به پوشش نسوزی که به روی شکل کشیده می شود که قالب را تکمیل کند و به آن پوشاننده می گویند. و در دو مرحله انجام می گیرد.

پوشانده اولیه از رنگ کردن یا فرو بردن شکل در آبی که مخلوطی از سدیم سلیکات و اکسید کرومیک و آرد زارگون است تشکیل شده قبل از خشک شدن پوشش معمولاً مقداری پودر خاک نرم روی آن ریخته، برای پوشاندن و زمینه را برای پوشاندن نهائی فراهم می کند. بعد از خشک شدن یک قالب فلزی دور شکل پوشیده شده می گیرند و با پوشش دوم که معمولاً از موادی که آب با آلومینیوم گداخته شده یا خاک رس مذاب تشکیل شده پر می کنند. برای اطمینان مواد نسوز دور اولین لایه پوشش را فرا می گیرد و معمولاً قالب را تکان می دهند. قالب را در کوره با درجه حرارت کم قرار می دهند تا اینکه هم پوشش سخت می شود و هم موم ذوب می شود و از قالب خارج می شود که در دفعات بعد استفاده شود. این مراحل معمولاً 8 ساعت در دمای 95 درجه سانتیگراد طول می کشد. زمان و حرارت دقیقاً به نوع جنس موم بستگی دارد. سپس درجه حرارت تا 1000 درجه سانتیگراد افزایش می یابد. تا اینکه قالب کاملاً سخت شده و هیچگونه اثری از موم باقی نماند. قالب برای قالبگیری آماده است. (در شکل 4-2)





 

 

قالب گیری فلز:

زمانیکه قالب گرم است آنرا در کوره ای که با برق گرم می شود و مواد مذاب در آن موجود است قرار می دهند (شکل 5-2) در درجه حرارت مناسب کوره را بر عکس کرده تا مواد مذاب وارد قالب شود. برای اطمینان از اینکه مواد مذاب درون تمام حفره‌ها را پر کرده، معمولاً مواد را با فشار زیاد تزریق می کنند. بصورتیکه تمام جزئیات نشان داده شود. سپس بعد از سرد شدن (انجماد) قالب کوره به حالت اولیه برگردانده می شود و قالب برداشته می شود. سپس با چکش های باید و قلم مواد را از قالب خارج
می کنند.





 

مزایای پوشاندن قطعه:

برتریهای این رویه بطور خلاصه در زیر توضیح داده شده است.

الف ) این نوع قالب گیری دقت دقیقی دارد و با تلرانس 8/0+ میلی متر ممکن است.

ب ) سطح صیقلی بسیار مناسبی دارد که دیگر به صاف کاری احتیاج ندارد و این در قالب گیریهائی که با فلز درست می شوند و سخت هستند مهم می باشد، برای عملیات دوباره صاف کاری (آلیاژهای کروم و نیکل) در پروانه توربینها استفاده می شود.

برتریهای این رویه بطور خلاصه در زیر توضیح داده شده است.

الف) این نوع قالب گیری دقت دقیقی دارد و با تلرانس 8/0 + میلی متر ممکن است.

ب) سطح صیقلی بسیار مناسبی دارد که دیگر به صاف کاری احتیاج ندارد و این در قالب گیریهائی که با فلز درست می شوند و سخت هستند مهم می باشد، برای عملیات  دوباره صاف کاری ( آلیاژهای کروم و نیکل ) در پروانه توربینها استفاده می شود.

ج) از آنجائی که شکل موم دقیقاً مانند قالب نهائی است و تمام قسمتها مشخص
می شود و به قطعات ریز دیگر احتیاجی نمی باشد.

د) قطعات ممکن است در یک واحد درست  بشوند. اگر از روش دیگر استفاده
می گردید، ممکن بود قطعه از چند قسمت تشکیل شود و در کنار همدیگر مونتاژ شود.

شکل اصلی این رویه این است که وسایل و هزینه تولید بسیار بالاست ولی چون تراشکاری اضافی احتیاج نمی باشد. مانند قالب گیریهای دیگر این هزینه سنگین با صرفه و مورد قبول است.

قالب ریخته گری فلزی:

در قالب گیری که توضیح دادیم از پوششهای مصرفی استفاده می کنیم. ولی قالبهای ریخته گری بر مبنای استفاده از قالبهای فلزی دائمی است که به اسم قالبها می باشند. از آنجائیکه طراحی و تولیدشان گران است و از ماشین های گران قیمت استفاده می شود. این روش زمانی اقتصادی است که در حجم زیاد تولید شود.

فلزقالب ریخته گری فلز:

فلز مورد استفاده برای قالب ریخته گری بطور کلی محدود به گروهی از فلزات غیر آهنی است، بدین ترتیب برای مدت زیادی عمر می کنند که نقطه ذوب آنها پایین تر از آلیاژها است.

دو شرط در این است که باید سیالیت خوب داشته باشند و در ضمن در برابر «تردی داغ» هم حساس نباشد. تردی داغ عبارتی است که برای توصیف تردی قطعات ریختگی در دمای بالا به کار می رود آلیاژهای مورد استفاده شامل آلیاژهای پایه آلومینوم روی منیزیم قلع و سرب و به مقدار محدودی برنج و برنز هستند تا کنون رایج ترین فلزات مورد استفاده در این روش آلیاژهای پایه آلومینیوم به صورت زیر است:

مس 4% سیلسیم 5% آهن 3% نیکل 2% و منیزیم 5/0% از قطعات ریخته گری تحت فشار آلومینیوم در جاهایی استفاده می شود که نسبت به استحکام به وزن بالایی موردنیاز است یک آلیاژ پایه روی معمولی شامل 4% آلومینیوم 7/2% مس و 3% منیزیم است این آلیاژ خواص ریخته گری خوبی دارد و به علاوه این مزیت را هم دارد که دمای ریخته گری آن در مقایسه با آلیاژهای پایه قلع و سرب محدود است کاربرد اصلی آنها در ساخت یاتاقانهای فشار پایین و قطعاتی دیگر است که در آنها استحکام یک فاکتور با اهمیت نیست آلیاژهای منیزیم که گاهی اوقات با نام تجاری Elektron شناخته می شوند در بین آلیاژهای فوق از همه سبکتر هستند و در جایی استفاده می شود که مسئله وزن و مقاومت در برابر خوردگی بهترین ملاحظات موجود باشند.

فرآیند دای کست (ریخته گری تحت فشار)

ریخته گری تحت فشار به طور عمده شامل دو نوع فرایند است.

1) ثقلی                         2) فشار بالا (تحت فشار)



لنزهای موازی

فعالیت این لنز از فشرده سازی منبع نور در میله نوری موازی می باشد، این اندازه‌گیری پرتو افکن برای کار اهمیت بسیاری دارد که با تابش نور روشن شده توسط میله موازی نوری اندازه ثابتی را پرتو افکن می نماید.

با مطالعه تصویر 12. 3 به این اصل پی خواهید برد.





 

 

پروژه عدسی

عمل کرد این نوع عدسی ها به این صورت است که یک تصویری از عملکرد وابسته و مناسب بزرگ سازی و توسعه در روی پروژه می باشد.

نوع بزرگ سازی سودمند مفید آن شامل درصدهای یعنی از 10، 15، 25، 50، 100
می باشد در این پروژه عدسی نشان می دهد که در شکل 11. 3 که مشابه عدسی گفته شده می باشد که کفایت کننده آن می باشد.

از نوعی از عدسی های نامناسب برای پروژه های برنامه نویسی استفاده می شود. هر چند که این نوع ممکن است احیاء کننده با ملاحظه توسط فرهنگ نوری باشد که در یک نوع سیستم کلی عدسی به کار می رود که در شکل 13. 3 نمایش داده می شود.


 



 

انواع پرتو افکن ها

در ابتدا استحکام و درست شدن پرتو افکن ها از وسایل موجود در کارگاه ها و در میان پیوستگی انجام می شد عدسی ها منبعی برای روشن سازی استفاده می شود. این پرده و عدسی ها ثابت بود و در روی دیوار که پروژه تصویری روی آن انجام می شد مطابق کار پرتو افکن ها ایجاد می شود.

این سیستم یک اشکالی دارا بود که در وضعیت اصلی و در یک مساحت کم بزرگ سازی می کرد که برای دوربین مخصوص فواصل دور استفاده می شد.

پرتو افکن های امروزی هر چند دارای یک نظام بسته کاملاً نوری بودند که در یک محفظه بسته مناسب وجود دارد. که این محفظه ممکن است عمودی یا از نوع افقی باشد که در شکل 14. 3 نمایش داده شده است.





 


روشهای اندازه گیری

روشهای اندازه‌گیری در این پروژه اندازه‌گیری یک روش ساده بوسیله بکار بردن قانون فولادها می‌باشد. این روش معقول قوانین فولادی می‌تواند بکار برده شود.

برای اندازه‌گیری با دقت از mm 3/0 میلیمتر بکار می‌رود و اگر چه بوسیله این دقت کار به خوبی انجام شدنی می‌باشد که با زیاد کردن دورهای بزرگ سازی می‌توان آن را بهتر کرد.

این بدان منظور است که برای مثال وقتیکه یک بزرگ سازی از ضریب15 را به کار می‌بریم وقت واقعی وابسته به آن انجام می‌شود تا بزرگی آن به 02/0، 15/3 میلیمتر برسد.

برای راحتی و بالا بردن اعتبار معمولاً اندازه‌گیری خطی ابعاد متناسب با پایه انجام می‌شود.

این اختراع واحد اندازه‌گیری برای این کار بود که در یک وسیله حرکت برای کنترل مقدار عددی در دو صورت هدایت کننده می‌باشد که در  درجه یکدیگر را در بخش افقی مماس هم می کنند. این کار برد اولین موقعیت در مقابل یک ماخذ و منبع در به شکل درآوردن یک خط عرضی و مارپیچ روی پرده و مطالعه روی یک میکرومتر مناسب می‌باشد و در آن منبع یک میکرومتر دیگری مطالعه می‌شود که تفاوتهایی که در این دو مطالعه وجود دارد که نشانگر دقت ابعاد اندازه‌گیری گوشه‌ای از این ابعاد ممکن است از نظر مقدار مشابه روش قبلی باشد که در این دقت یک پرده سنجش را انجام داده که به طور واحد به کار برده می‌شود. که این کار با یک کنترل کننده مقدار میکرومتر یا درجه‌بندی فرعی تنظیم می‌شود که در شکل 15/3 نمایش داده می‌شود.





 

 

پروژه‌ای از نمودارهای پیچیده:

در بازرسی و بازدید پروژة نوری بکار برده شده و رسیدگی کردن اجزائی از شکل پیچیدة e.g  که شکل ابزار و نوعی نمودار فرانوری می‌باشد. این کار اغلب دست یابی بوسیله سنجش نمودار با یک الگو می‌باشد. این آمادگی مخصوص بوسیله بزرگی نقشهای نمودار می‌باشد که ( متناظر با بزرگ‌سازی نوری ) وابسته به یک فیلم و اشکال شفاف کننده می‌باشد.که معمولاً نصب می‌شود در روی شیشه برای محافظت از نور نصب می‌شود و عموماً وقتی که این منبع در جلو قرار می‌گیرد انجام می‌شود و تلرانس اجزاء متعلق به آن نمایش داده می‌شود. بنابراین ساختن آن ممکن است با تاریخچه دایر کردن آن یکی شود. اگر اجزاء درون آن در اندازه مخصوص ساخته شده باشد وقتی که پروژه نوری که در شکل وجود دارد مانند پیچاندن باریک خطی می باشد که این کار بوسیله هجوسازی اشکال انجام می‌شود که در شکل 16/3 نمایش داده می‌شود که شکل مورد نظر به دو صورت a b می‌باشد که هر دو شکل در صفحة بعد نمایش داده می‌شود.



 

روشن است که یکی از مؤثرترین هم تراز کننده یک ریسمان مارپیچ است که این کار با هجوسازی ممکن است. معمول‌ترین کار قبول مدل این پروژه می‌باشد. که اول سنجش شکل خارجی نقطه اثر که از خارج آن اندازه‌گیری می‌شود.

این هجوسازی یک نوع بلعیدگر و همچنین که این حاشیه و لبه پوشیده می‌شود. بعد از این که نشان دادن شکل ممکن شد برای سیمای درونی نقاط و تولید نقاط و پیدا کردن صحیح نمودار می‌باشد.

شکل درونی هر یک از اشکال باریک نمی‌تواند بصورت یک پروژه مستقیم باشد. تنها راه ممکن پیروزی این مسئله در ساختن یک پروژة صحیح و کلی از همان راه برای اشکال باریک می‌باشد. در این روش از اشکال باریک مهم‌ترین عمل آن است که در بخش خارجی آن را غیر جدی گرفته شود و بی‌توجهی همچنین به کوچکترین شکل خطری از تعریف آن می‌باشد.


فهرست مطالب

 

ریخته گری و متالوژی پودر ۶
شکل دهی پوسته ۷
پخت نهایی و ریزش ۷
مراحل تهیه و ساخت قالب گری پوسته ای ۸
قالب گیری Invesment ) (بسته‌ای) ۹
پوشاندن مدل ۱۲
قالب گیری فلز ۱۳
مزایای پوشاندن قطعه ۱۴
قالب ریخته گری فلزی ۱۵
فلزقالب ریخته گری فلز ۱۵
دای کست ثقلی ۱۶
دای کست تحت فشار (فشار بالا) ۱۷
قالب های ریخته گری تحت فشار ( دای کست ) ۲۰
ویژگیهای مراحل مختلف قالب ریزی ۲۲
متالوژی پودری ۲۲
همگن سازی ۲۴
محدودیت ها و ملاحظات طرح ۲۵
اندازه گیر ۲۸
تطبیق گرها ۲۸
تطبیق گر مکانیکی ۲۹
تطبیق گر با تسمه پیچشی ۳۰
تطبیق گر الکترونیک ۳۲
تطبیق گر نوری ۳۴
روش های اندازه گیری فشار باد ۳۵
روشهای اندازه گیری ۳۷
لنزهای موازی ۴۱
پروژه عدسی ۴۱
انواع پرتو افکن ها ۴۲
روشهای اندازه گیری ۴۳
پروژه‌ای از نمودارهای پیچیده ۴۴
کاربردهای اتوکولیماتور ۴۹
اندازه گیری گوشه‌ها و زوایا ۵۳
زاویه دکور: ( Dekkor ) 54
تراز دقیق ۵۶
اندازه‌گیری سطح تمام شده ۵۷
آرایش ۵۸
سیستم اندازه‌گیری ۵۸
روشهای اندازه‌گیری ۵۹
وسایل ثبت الکتریکی ۶۲
آزمایشات برای مرغک ماشین تراش ۶۴
محور موازنه ماسوره با بخش متحرک ماشین تراش ۶۵
گونیای متحرک لغزنده مقطع ( عرضی ) با محور ماسوره ۶۶
محور موازنه انتهای بدنه تیغه همراه با بستر ۶۷
آزمایش هایی برای ماشین های فرز افقی ۶۷
میز متحرک موازی با تی اسلات مرکزی ۶۷
گونیای محور ماسوره‌ای با تی اسلات مرکزی ۶۸
میز گونیای شکل با استفاده از شیوه‌های عمودی ۶۹
آزمایش‌های ماشین‌های سوراخکاری ۷۰
حدود و انطباق‌ها ۷۲
سیستم های محدودیات و تناسبها ( timit -&-fits ) 76
انحراف اساسی ۷۷
تعیین نوع اندازه مبنا ۷۹
حد اندازه‌گیری ۸۱
تلرانسهای مقیاسی ( نمونه ) و دقت مجاز فرسایشی ۸۳

 

 

دانلود بررسی کاربرد ریخته گری در سیستم های اندازه گیری(متالورژی پودر)

دانلود مقاله بررسی متالورژی پودر

بررسی متالورژی پودر

مقاله بررسی متالورژی پودر در 48 صفحه ورد قابل ویرایش

دانلود بررسی متالورژی پودر

تحقیق بررسی متالورژی پودر
پروژه بررسی متالورژی پودر
مقاله بررسی متالورژی پودر
دانلود تحقیق بررسی متالورژی پودر
پروژه
پژوهش
مقاله
جزوه
تحقیق
دانلود پروژه
دانلود پژوهش
دانلود مقاله
دانلود جزوه
دانلود تحقیق
دسته بندی فنی و مهندسی
فرمت فایل doc
حجم فایل 41 کیلو بایت
تعداد صفحات فایل 48

بررسی متالورژی پودر



پیشگفتار:

یکی از شاخه‌های علم متالورژی که دز سالهای اخیر رشد زیادی یافته است. متالورژی پودر است. البته قدمت تولید قطعات با پودر به پنج هزار سال و بیشتر  می رسد. یکی دیگر از دلایل توسعه متالورژی پودر این است که در روش مزبور فلز تلف  شده به مراتب کمتر از  سایر روشهاست و حتی می توان گفت وجود ندارد. سرمایه گذاری در صنعت متتالورژی پودر نیز،‌کمتر از سرمایه گذاری برای  روشهای کلاسیک ساخت قطعات  است. زیرا در مرحله هم جوشی ،  درجه حرارت لازم کمتر از درجه حرارت ذوب فلزات است و در نتیجه، کوده های مورد احتیاح ارزانتر اند.

دامنه استفاده از متالورژی پودر بسیار متنوع و گسترده بوده و در این رابطه کافی است به زمینه هایی همچون تولید رشته های لامپها، بوش های خود روانساز، متعلقات گیربکس اتومبیل، اتصالات الکتریکی، مواد ضد سایش قطعات توربین و آمالگم های دندانپزشکی اشاره شود. علاوه بر آن پودر فلزات در موارد و کاربردهایی چون صنایع رنگ سازی مدارهای چاپی، آردهای غنی شده مواد منفجره، الکترود های جوشکاری،  سوخت راکت ها، جوهر چاپ، باطری الکتریکی قابل شارژ، لحیم کاری و کاتالیزورها مورد استفاده قرار می گیرند.

متالورژی پودر در ابتدا فلزات معمول، همچون مس و آهن شروع شد ولی لانه استفاده  از عمل آن به فلزات غیر دیگر نیز سرایت کرد. کاربردهای جدید تری برای متالورژی پودر به دنبال داشت. بطوریکه از آغاز دهه 1940 بسیاری از قطعات فلزات غیر معمول از طریع این تکنولوژی تهیه شدند. در این گروه مواد می توان از فلزات دیر گداز مانند نایوبیم، تنگستن، مولیبدن، زیر کنیم، تیتانیم، رنیم و آلیاژهای آنها نام برد. همچنین تعدادی از مواد هسته ای و ترکیبات الکتریکی و مغناطسسی نیز با تکنیک های  متالورژی پودر تهیه شدند. هر چند موفقیت اولیه متالورژی پودر بیشتر مدیون مزایای اقتصادی آن است. ولی در سالهای اخیر ساخت قطعاتی که تولید آنها  با روشهای دیگر مشکل می باشد در گسترش این تکنولوژی  سهم چشمگیری داشته است. انتظار می رود که این عوامل در جهت بسط متالورژی پودر و ابداع کاربردهای آتی آن دست به دست هم داده و دست آودرهای تکنولوژیکی تازه ای را  به ارمغان آورند. تداوم رشد متالورژی پودر را میتوان به عوامل پنجگانه زیر وابسته دانست:

الف) تولید انبوه قطعات سازه ای دقیق و با کیفیت بالا که معمولاً‌بر بکارگیری آلیاژهای آهن مبتنی می باشند.

ب ) دستیابی به قطعاتی که فرایند تولید آنها مشکل بوده و باید کاملاً فشرده و دارای ریز ساختار یکنواخت ( همگن) باشند.

پ ) ساخت آلیاژهای مخصوص،‌عمدتاً مواد مرکب محتوی فازهای مختلف که اغلب برای شکل دهی نیاز به  بالا تولید می شوند.

ت) مواد غیر تعادلی از قبیل آلیاژهای آمورف و همچنین آلیاژ های ناپایدار.

ث ) ساخت قطعات پیچیده که شکل و یا ترکیب منحصر به فرد و عیر معمول دارند

متالورژی پودر روز به روز گسترش بیشتری یافته و بر میزان پودر تولیدی به طور پیوسته افزوده، بطوریکه پودر آهن حمل شده از آمریکا از سال 1960 تا 1978 میلادی به ده برابر افزایش یافته است. هر چند در سالهای اخیر آهنگ رشد این تکنولوژی چندان پیوسته نبوده، ولی مجموعه  شواهد دلالت بر گستردگی بیشتر آن، در مقایسه با روشهای سنتی قطعه سازی دارد. باز خوردهای دریافت شده از مهندسین طراح نشان می دهد که هر چه دانش ما در متالورژی پودر افزودن تر می شود، دامنه کاربرد این روش نیز گسترش بیشتری می یابد. اغلب دست آوردهای نوین این زمینه صنعتی بر قابلیت آن در ساخت،‌ مقرون به صرفه قطعات با شکل و ابعاد دقیق مبتنی است.


مقدمه

در قرن بیستم و در سالهای اخیر، تکنیک متالورژی پودر بطور جدی تر،‌ مورد توجه قرار گرفته و جای خود را به اندازه کافی در صنعت باز کرده است بطوری که در حال حاضر می توان آن را به عنوان یکی از تکنیک های جدید متالورژی به حساب آورد. البته قدمت تولید قطعات با پودر به بیش از پنج هزار سال پیش می رسد، درآن زمان کوره هایی که بتوانند حرارت لازم را برای ذوب فلزات ایجاد کند، وجود نداشتند. روش معمول، احیا سنگ معدن با ذغال چوب بود و محصولی که به دست می آمد نوعی فلز اسفنجی بود که در حالت گرم با چکش کاری امکان شکل دهی مطلوب داشت.

هم اکنون، ستونی آهنی با وزنی حدود شش تن در شهر دهلی وجود دارد که در هزار وششصد سال پیش با همین روش تهیه شده است . در اواخر قرن هیجدهم و لاستون

( wollaston ) کشف کرد که می توان پودر فلز پلاتین را که در طبیعت به صورت آزاد شناخته شده بود، پس از تراکم و حرارت دادن، درحالت گرم با چکش کاری شکل داد. ولاستون جزئیات روش خود را درسال 1829 منتشر کرد و اهمیت فاکتورهای نظیر اندازه دانه ها، متراکم کردن پودر با وزن مخصوص بالا و اکتیویته سطحی و غیره.. را توضیح داد.

همزمان با ولاستون وبطور جداگانه متالوریست بر جسته روسی پیومتر زابولفسکی

( pyotrsobolevsky ) در یال 1826، از این روش برای ساختن سکه ها و نشان ها از جنس پلاتین استفاده کرد. در نیمه دوم قرن نوزدهم، متخصصین متالورژی به روشهای روب فلزات با نقطه روب بالا دست یافتند و همین مسئله باعث شد که مجدداً  استفاده از متالورژی پودر محدود شود،‌ هر چند تقاضا برای تولید قطعاتی مانند تنگستن از طریق  متالورژی پودر فلز، تلف شده به مراتب کمتر از سایر روشهاست و حتی می توان گفت وجود ندارد. دراین مورد، بطوری که تجربه نشان می دهد،‌ هر یک کیلوگرم محصول ساخته شده باروش متالورژی پودر، معادل است با چند کیلو گرم محصول ساخته شده با سایر روشهای شکل دادن نظیر برش و تراشکاری،  چون در روشهایی نظیر تراشکاری مقادیر زیادی از فلزبه صورت براده در می آید که تقریباً غیر قابل استفاده است. علاوه بر آن یک کیلو گرم از مواد ساخته شده بوسیله روشهای متالورژی پودر می تواند کار ده ها کیلو گرم فولاد آلیاژی ابزار را انجام دهد.

3-1- فصل سوم:

تولید پودر به روش الکترولیتی :

تحت شرایط مناسب می توان پودر فلزات را بر روی کاتد سلول الکترولیز رسوب داد. پودر خالص فلزات تیتا نیوم، مس،آهن و برلیم نمونه هایی از پودرهای تولید شده با روش اخیر می باشد.

انحلال در سطح آند و ایجاد رسوب پودری در کاند انجام می گیرد. انتقال یونها در الکترولیت منجر به تولید شد پودری با درجه خلوص بالا در سطح کاتد می شود که پس از جمع آوری،‌ آسیاب و نهایتاً برای کاهش سختی کرنشی ایجاد شده  در آن تحت عمل آنیلینگ قرار می گیرد. نیروی محرکه تولید پودر در این روش ولتاژ خارجی اعمال شده بردو قطب الکترولیز بوده و جمع آوری پودر از سطح کاتد با نشستن سطح آن و خشک کردن رسوب حاصله عملی می شود. پودر تولید شده به روش الکترولیتی معمولاً شاخه ای و یا اسفنجی بوده و ویژگیهای آن تابع شرایط حمام درحین رسوب و همچنین عملیات بعدی انجام گرفته بر روی پودر می باشد.

بالا بودن دانسیته جریان خارجی،‌ کم بودن غلظت یونی در محلول الکترولیت و اسیدی بودن آن و همچنین افزایش مواد کلوئیدی به حمام به تولید پودر  اسفنجی کمک  می کند. دمای حمام در شرایط کار در حدود 60 درجه سانتیگراد بوده و از الکتولیت با گران و سیکوزیه بالا استفاده می شود. از بهم زدن الکترولیت نیز پرهیز می شود تا رسوب ایجاد شده بر سطح کاتد حتی الامکان باشد.

هر چند الکترولیز برای تولید پودرهای با درجه خلوص بالا روشی شناخته شده می باشد ولی انجام آن مشکلاتی را نیز به همراه دارد. ترکیب شیمیایی حمام الکترولیت بسیار حائز اهمیت بوده و ناخالصی های موجود در آن می تواند رسوب پودر بر سطح کاتد را با وقفه مواجه سازد. علاوه بر این روش مذکر تنها برای تولید پودرهای فلزی( غیر آلیاژی ) قابل استفاده می باشد. همچنین تمیز کردن و آماده سازی پودر تولید شده برای فرایند های بعدی می تواند هزینه تولید را به میزان زیادی افزایش دهد.


4-1- فصل چهار:

تولید پودر به روش پاشش

4-1-1- پاشش با گاز

بکارگیری هوا، ازت، هلیم و آرگون بعنوان سیالات متلاشی کننده جریان مذاب در تولید پودر فلزات و آلیاژها از کار آیی چشمگیری برخوردار می باشد. جریان فلز ( آلیاژ) مذاب در اثر برخورد با گاز منبسط شده ای که از یک افشانک خارج می گردد متلاشی شده و در مراحل بعدی به دانه های پودر کروی تبدیل می گردد. پاشش گازی برای تولید پودر سوپر آلیاژ ها و مواد پر آلیاژ روشی ایده آل و شناخته شده می باشد.

طرحهای گوناگون مورد استفاده تابعی از مکانیزم تغذیه فلز مذاب و پیچیدگی تجهیزات ذوب و جمع آوری پودر می باشد، ولی ویژگی مشترک همه این روشها انتقال انرژی از یک گاز سریعاً منبسط شونده به جریان مذاب و تبدیل آن به دانه های پودر است. افشاننده های با دمای کم دارای طرح افقی مطابق شکل11 می باشند. و گاز دارای سرعت بالا که از یک افشانک خارج می گردد فلز مذاب را به منطقه انبساط گاز می کشاند. سرعت زیاد گاز باعث تولید جریانی از قطرات ریز مذاب شده که در حین حرکت در محفظه جمع آوری پودر سرد و منجمد می گردند.

روش پاشش برای فلزات با نقطه ذوب بالا در محفظه بسته ای که با گاز خنثی پر شده انجام می گیرد تا از اکسید اسیدن دانه های پودر جلوگیری شود. اندازه محفظه ( تانک) پاشش باید به نحوی انتخاب شود که دانه های پودر پیش از برخورد به دیواره های آن بصورت جامد در آیند. در چنین سیستمهایی مذاب در کوره القایی تحت خلاء، تهیه و به افشانک ریخته می شود. دمای فوق ذوب تا حد قابل ملاحظخ ای بابد بجای افشانک مدور می توان از افشانکهای چند گانه که بصورت محیطی جریان مذاب را احاطه کرده اند، استفاده نمود. گاز پاشش مذاب باید از محفظه تولید پودر تخلیه شود تا از ایجاد فشار جلوگیری شود.

در حالیکه در سیستم پاشش افقی اینکار بوسیله فیلتر تعبیه شده در بدنه دستگاه، که نقش جمع آوری پودر را نیز بعهده دارد، انجام می شود. درتجهیزات پاشش قائم گاز بکار گیری سیلکون، تخلیه و در صورت نیاز بازیابی شده و دانه های ریز پودر نیز از آن جدا می شوند.

پاشش گازی را می توان تحت شرایط کاملاً خنثی انجام داد. از این تولید پودر های پر آلیاژ با ترکیب آلیاژی دست نخورده ( کنترل شده ) با این روش امکان پذیر می باشد. دانه های پودر حاصل از فرایند، کروی و توزیع دانه بندی آنها نسبتاً گسترده می باشد متغیرهای کنترل کننده فرایند نسبتاً زیاد و شامل نوع گاز، سرعت گاز، شکل افشانک و دمای گاز می باشد.


2-4-1- پاشش آبی

پاشش آب متدوالترین فرایند برای تولید پودر فلزات و آلیاژ های با نقطه ذوب پایینتر از 1600 درجه سانتیگراد می باشد. جهت دهی آب به سمت مسیر مذاب را می توان با استفاده از افشانک حلقوی، چند تایی و یا منفرد عملی نمود. این فرایند مشابه پاشش گازی می باشد. با این تفاوت که سرعت انجماد در این مورد بیشتر و ویژگیهای عامل متلاشی کننده مذاب نیز با حالت پیشین متفاوت می باشد.

در پاشش آبی شکل دانه های پودر ، به علت انجماد سریعتر در مقایسه با روش گازی، نامنظم تر بوده و بعلاوه سطح دانه ها ناصاف تر و اکسید اسیون آنها نیز بیشتر است. با توجخ به انجماد نسبتاً سریع دانه ها کنترل شکل آنها در صورتی امکان پذیر خواهد بود که دمای فوق ذوب در حد قابل ملاحظه ای بالا شد.

3-4-1-پاشش گریز از مرکز

نیاز به کنترل اندازه دانه های پودر و همچنین اشکالات موجود در تولید پودر فلزات فعال منجر به توسعه و بکارگیری این روش پاشش شده است. در افشانک مختلفی که بر مبنای اعمال نیروی گریز از مرکز بر مذاب بنا شده اند، نیرو باعث پرتاب قطرات مذاب و انجماد آنها بصورت پودر می گردد. یکی از نمونه های بکار گیری این روش، روش الکترود چرخان است که در تولید پودر فلزات  فعال مانند زیر کنیم، وم همچنین سوپر آلیاژ ها بکار گرفته می شود،‌

1-2 : ریخته گری دوغابی یا Slip Casting

از این روش بطور وسیع برای سرامیکها و در مقیاس کمتر برای فلزات استفاده می شود. مواد ذیل برای ریخته گری لازم است:

1- پودر فلز یا سرامیک

2- مایع برای معلق نگهداشتن ذرات ( آب الکل)

3- مواد افزودنی برای جلو گیری از ته نشینی ذرات و چسبنده ها

دراین روش معمولاً‌ ذرات از 5 میکرو است ( از ذرات بزرگتر از 20 میکرومتر به علت سرعت ته نشین زیاد به ندرت استفاده می شود) با  کمک افزودنی ها از ته نشینی ذرات بطور سریع جلو گیری بعمل می آید و عمل  فشرده شدن در ریخته گری دوغابی یکنواخت می شود. مواد پس از آماده شدن در قالبی که از مواد جذب کننده مایع ( مثل پلاستر پاریس ) ساخته شده است رسخته می شود، معمولاً چندین ساعت وقت لازم است تا مایع از خلل و فرج مویی (‌ Capillary ) شکل قالب خارج شود و مواد متراکم شده از قالب بیرون آید.

قبل از  زنیترتیگ قطعه متراکم شده باید خشک شود تا رطوبت بطور کامل از آن خارج و سپس زینتر شود. با این روش قطعات با تخلخل کم و یا زیاد می توان تولید کرد اما وزن مخصوص قطعه متراکم شده در این روش پایین است و در زنیترتیگ انقباض زیاد تری لازم است تا به وزن مخصوص بالاتر برسد.


فهرست مطالب

 

پیشگفتار ۵
مقدمه ۸
۱-۱- روشهای مکانیکی تولید پودر ۱۰
۱-۱-۱- روش ماشین کاری ۱۰
۲-۱-۱- روش خرد کردن ۱۱
۳-۱-۱- روش آسیاب ۱۲
۴-۱-۱- روش ساچمه ای کردن ۱۳
۵-۱-۱- روشدانه بندی باگرانوله کردن ۱۳
۶-۱-۱- روش اتمایز کردن ۱۳
۷-۱-۱- تولید پودر با روش مانسمن ۱۵
تولید پودر به روش شیمیایی ۱۷
۱-۲-۱ روش احیاء ۱۷
۲-۲-۱ روش رسوب دهی ( ته نشین سازی از مایع) ۱۸
۳-۲-۱- روش تجزیه گرمایی ۱۹
۴-۲-۱- روش رسوب از فاز گازی ۲۰
۵-۲-۱- روش خوردگی مرزدانه ها ۲۱
تولید پودر به روش الکترولیتی ۲۴
تولید پودر به روش پاشش ۲۶
۴-۱-۱- پاشش با گاز ۲۶
۲-۴-۱- پاشش آبی ۲۸
۳-۴-۱-پاشش گریز از مرکز ۲۸
۱-۲ : ریخته گری دوغابی یا Slip Casting 29
تراکم با سیستم چند محوری ۳۳
تراکم در قالبها ۳۴
۲-۲-۲- متراکم کردن با لرزاندن ( ویبره ای ) ۳۴
۳-۲-۲- متراکم کردن سیکلی ( نیمه مداوم) ۳۶
۴-۲-۲- متراکم کردن به روش ایزواستاتیک ۳۷
۵-۲-۲- متراکم کردن با نورد ۳۸
۲-۴ : تزریق در قالب یا injection molding 42
مواد آلی افزودنی ۴۳
مخلوط کردن ذرات پودر با مواد آلی ۴۵
نحوه تزریق در قالب ۴۵
محدودیتهای روش تزریق ۴۶
کاربرد کاربید سمانته شده ۴۹
II- الماس مصنوعی ۴۹
تولید ابزار از الماس مصنوعی ۵۰
III- تولید یاقاقانهای خود روغن کار ۵۱
آنالیز شیمیایی یاتاقانهای خود روغن کار ۵۳
یاتاقانهای برنزی زینتر شده ۵۳
iv- تولید پودر برای روکش الکترودها ۵۵
روکش الکترودها ۵۶
کنترل خواص سرباره ۵۷
کیتفیت رسوب جوش ۵۷
قابلیت چسبندگی با اکستروژن ۵۸

 

دانلود بررسی متالورژی پودر

دانلود ساخت کامپوزیت Al/Zircon به روش متالورژی پودر و بررسی تاثیر عوامل مختلف فرآیند بر خواص کامپوزیت

پایان نامه کارشناسی ارشد مهندسی شناسایی و انتخاب مواد مهندسی با عنوان ساخت کامپوزیت Al/Zircon به روش متالورژی پودر و بررسی تاثیر عوامل مختلف فرآیند ب

کامپوزیت های AlZrSiO4 به دلیل خواص استحکامی و مقاومت سایشی بالای خود کاربردهای زیادی در صنایع نظامی، هوا فضا و غیره دارند روش متالورژی پودر از جمله مناسب ترین روشهای ساخت کامپوزیت ها می باشد انجام پروژه و پایان نامه fileina

دانلود پایان نامه کارشناسی ارشد مهندسی شناسایی و انتخاب مواد مهندسی با عنوان ساخت کامپوزیت Al/Zircon به روش متالورژی پودر و بررسی تاثیر عوامل مختلف فرآیند ب

کامپوزیت AlZircon
کامپوزیت زمینه فلزی
آلومینیم
زیرکن
متالورژی پودر
تف جوشی
دانلود پایان نامه کارشناسی ارشد مهندسی شناسایی و انتخاب مواد مهندسی با عنوان ساخت کامپوزیت AlZircon به روش متالورژی پودر و بررسی تاثیر عوامل مختلف فرآیند بر خواص کامپوزیت
سیستم همکاری در فروش فایل فایلینا
همکاری در فروش فایل
فروش فایل
انجام پروژه و پایان نامه
fil
دسته بندی مهندسی مواد
فرمت فایل doc
حجم فایل 33106 کیلو بایت
تعداد صفحات فایل 111

پایان نامه کارشناسی ارشد مهندسی شناسایی و انتخاب مواد مهندسی با عنوان

ساخت کامپوزیت Al/Zircon به روش متالورژی پودر و بررسی تاثیر عوامل مختلف فرآیند بر خواص کامپوزیت

 
 
چکیده
کامپوزیت های Al-ZrSiO4 به دلیل خواص استحکامی و مقاومت سایشی بالای خود کاربردهای زیادی در صنایع نظامی، هوا فضا و غیره دارند. روش متالورژی پودر از جمله مناسب ترین روشهای ساخت کامپوزیت ها می باشد. یکی از مهمترین مزایای این روش در مقایسه با روشهای ذوبی این است که درجه حرارت فرآیند در این روش پایین تر است، به همین دلیل از برهم کنش بین فاز زمینه و تقویت کننده و ایجاد فازهای ناخواسته ناشی از آن جلوگیری می شود. بدین منظور ابتدا پس از انتخاب آلیاژ مورد نظر و همچنین زیرکن، دو دما جهت تف جوشی مدنظر قرار گرفت و تف جوشی در دماهای ۶۰۰ و  c°۶۵۰ انجام شد.
 
 میزان زیرکن جهت هر کامپوزیت به مقدار  ۵/۱،  ۵/۲،  ۵/۳،  ۵، ۱۰، ۱۵، و ۲۰ درصد حجمی منظور شد.. در این پروژه مطالعه بر روی پارامترهای کسر حجمی و دمای تف جوشی، خواص مکانیکی و همچنین ریزساختار این کامپوزتها، مورد بررسی قرار گرفته است. نتایج نشان داد که خواص مکانیکی همچون استحکام فشاری و سختی برای نمونه های تف جوشی شده در c°۶۵۰ در مقایسه با نمونه های مشابه ساخته شده از وضعیت مطلوبتری برخوردار هستند. همچنین این خواص با افزایش کسر ذرات تا ۵% حجمی افزایش قابل ملاحظه ای نسبت به نمونه خالص یافته اند. الگوی پراش اشعه X نیز حضور فاز ZrSiO4 را تایید نموده است. به علاوه، مطالعات میکروسکوپ نوری و الکترونی نشان  می دهد که توزیع ذرات ZrSiO4 در داخل زمینه نیز در مورد نمونه های کامپوزیتی کاملا یکپارچه بوده و بطور کلی نتایج نشان می دهد که تولید این کامپوزیتها به روش متالورژی پودر موفقیت آمیز بوده است. 
 
 
 
کلمات کلیدی:

کامپوزیت Al/Zircon

کامپوزیت زمینه فلزی

آلومینیم

زیرکن

متالورژی پودر

تف جوشی

 
 
 
 
 
فهرست مطالب
 
چکیده                                                                                                              
مقدمه                                                                                                               
فصل اول: کلیات
فصل دوم: مروری بر منابع

۲-۱- کامپوزیت ها و انواع آن                                                        

۲-۱-۱- کامپوزیت‌های زمینه پلیمری  PMCS    
۲-۱-۲-  کامپوزیت‌های زمینه سرامیکی   CMCS
۲-۱-۳- کامپوزیت‌های کربن - کربن CCCS    
۲-۱-۴-  کامپوزیت‌ها با زمینه بین فلزی   IMCS
۲-۱-۵- کامپوزیت‌های زمینه فلزی     MMCS      

۲-۱-۶-  انواع تقویت‌کننده‌ها و خواص آنها

۲-۱-۷- معرفی فلزAl  بعنوان فاز زمینه کامپوزیت 
۲-۱-۸- معرفی خواص زیرکن 

۲-۱-۹-  دلایل استفاده از کامپوزیت Al-Zircon و کاربرد آن 

۲-۲-  روش های تولید کامپوزیت های زمینه فلزی
۲-۲-۱-  روش گردابی 
۲-۲-۲- روش کمپوکستینگ
۲-۲-۳-  روش ریخته گری کوبشی 
۲-۲-۴- روش ریخته‌گری فشار بالا 
۲-۲-۵-  روش رخنه‌دهی 
۲-۲-۶-  روش درجا 
۲-۲-۷-  روش شکل دهی توسط اسپری 
۲-۲-۸- روش متالورژی پودر

۲-۲-۹- مزایا  و  معایب استفاده از روش متالورژی پودر برای تولید کامپوزیت

۲-۳: کامپوزیت های زمینه آلومینیمی تقویت شده با زیرکن
۲-۳-1: توزیع ذرات زیرکن در نمونه ها
۲-۴- تاثیرفرآیند پروسه ساخت برریزساختار
۲-۴-۱: خواص مکانیکی کامپوزیتهای Al-Zircon
۲-۴-۱-۱: تاثیر کسر حجمی  
۲-۴-۱-۲- تاثیر روش تولید و اندازه ذره 
۲-۴-۱-۳- تاثیر مواد افزودنی
۲-۴-۲-  اثر مقدار و اندازه ذارت 4ZrSiO بر روی چگالی
۲-۴-۳-  اثر مقدار و اندازه ذرات Zircon بر روی سختی

۲-۴-۴- اثر مقدار و اندازه ذارت تقویت کننده  بر استحکام  فشاری و کششی، مدول یانگ وتغییر طول تا شکست 

۲-۴-۵- اثر مقدار واندازه ذرات Zircon بر ریزساختار کامپوزیت Al-Zircon

2-4-6-اثر دمای تف جوشی بر روی خواص و ریزساختارکامپوزیت
 
فصل سوم: روش تحقیق
۳-۱- مشخصات مواد اولیه   
۳-۲- تجهیزات
۳-2-۱- تجهیزات لازم برای ساخت قطعه
۳-2-2- تجهیزات مربوط به بررسی خواص نمونه ها 
۳-۳- آماده سازی نمونه ها
۳-۳-۱- ساخت کامپوزیت های Al- ZrSiO4
۳-۴- روش انجام آزمایش
3-4-1-اندازه گیری چگالی
3-4-2اندازه گیری سختی 
۳-۴-۳- مطالعات میکروسکوپ نوری 

۳-۴-4- مطالعات میکروسکوپ الکترونی روبشی (SEM)

3-4-5-  آزمایش  فشار
3-4-۶- پراش اشعه X (XRD)
 
فصل چهارم : نتایج و بحث
۴-۱- بررسی نتایج آزمایش چگالی

4-1—1- اثر مقدار ذرات زیرکن بر چگالی قطعات تف جوشی شده

4-1-2-اثر دمای تف جوشی بر روی چگالی کامپوزیت Al-Zircon

۴-۲- بررسی نتایج آزمایش سختی کامپوزیت Al-Zircon 
4-2-1- اثر درصد حجمی ذرات زیرکن بر سختی کامپوزیت Al-Zircon 
4-2-2-اثر دمای تف جوشی بر روی سختی کامپوزیت Al-Zircon

۴-۳- بررسی  نتایج آزمایش فشار کامپوزیت های Al-Zircon

4-3—1- اثرمقدار تقویت‌کننده بر تنش تسلیم، استحکام  فشاری و تغییر طول تا شکست کامپوزیتAl-Zircon 
4-3-2-اثردمای تف جوشی  بر روی تنش تسلیم، استحکام فشاری و تغییر طول تا شکست کامپوزیت Al-Zircon 

۴-۴- بررسی تصاویر میکروسکوپ الکترونی

۴-۴-۱- اثر مقدار ذرات زیرکن بر روی ریزساختار کامپوزیت Al-Zircon

۴-۴-۲- اثردمای تف جوشی بر روی ریزساختار کامپوزیت
۴-۵- بررسی تصاویر میکروسکوپ نوری 
۴-۶- بررسی نتایج آزمایش پراش اشعه X 
۴-۶-۱- پودر زیرکن
۴-۶-۲- کامپوزیت آلومینیم - زیرکن
 
فصل پنجم (نتیجه گیری)
۵- نتیجه گیری
پیشنهادها برای ادامه کار
مراجع
 
 
 
فهرست جداول 
جدول۲-۱: خواص دیرگداز زیرکن[۱۵].
جدول ۲-۲ . مقایسه خواص روشهای مختلف تولید کامپوزیت زمینه Al [۱۸] .
جدول ۲-۳. تغییرات چگالی با تغییرات مقدار تقویت کننده [۸].
جدول۲-۴.تغییرات چگالی و سایر خواص با تغییر درصد حجمی و اندازه تقویت کننده [۲۲].
جدول۲-۵ . مقادیراستحکام فشاری نهایی کامپوزیت با تغییر مقدار تقویت کننده [۸].
جدول ۳-۱: ترکیب شیمیایی پودر  ZrSiO4مورد استفاده.
جدول ۳-۲ . نسبت پودرهای مورد استفاده برای تولید کامپوزیت.
جدول ۳-۳ . مشخصات نمونه های مورد استفاده در این پژوهش.
جدول ۳-۴ . ترکیب شیمیایی محلول اچ کلر [۶۴].
جدول ۴-۱ : تغییرات چگالی و چگالی نسبی با تغییر مقدار تقویت کننده و دمای  تف جوشی.
جدول ۴-۲ : تغییرات مقدار سختی کامپوزیت ها  با تغییر مقدار ذرات زیرکن و دمای تف جوشی.
 
 
فهرست تصاویر
شکل ۲-۱ . طبقه بندی مواد کامپوزیت]۱۲[. 
شکل ۲-۲: نمایش یک کریستال طبیعی zircon تک بلور [۱۵].
شکل ۲-۳: نمایش صفحات کریستالی zircon تک بلور [۱۵].
شکل ۲-۴: نمایی از شبکه کریستالی پیچیده zircon [۱۶].
شکل۲-۵.  روشهای ساخت کامپوزیت های زمینه فلزی [۱۲].
شکل ۲-۶ .  سهم روشهای مختلف تولید کامپوزیت های زمینه فلزی  در صنعت [۱۳].
شکل ۲- ۷ . شمایی ازتولید کامپوزیت زمینه فلزی به روش گردابی [۱۷].
شکل ۲-۸ . شمایی از روش شکل دهی توسط اسپری فلز مذاب [۳۱].
شکل۲-۸ .  نمایی از فرآیند پرس سرد ایزواستاتیک [۱۸].
شکل۲-۹ .  نمایی از فرآیند پرس  بوسیله  سمبه  و  ماتریس [۱۸].
شکل۲-۱۰ .  تعدادی از فرآیندهای رایج اکستروژن در متالورژی پودر [۱۹]. 
شکل ۲-۱۱ . فرآیند های  متداول  متالورژی پودر [۱۹].
شکل ۲-۱۲ .  شماتیکی از فرایند  اتصال از طریق انتقال اتمها  به  نقاط گردنی در هنگام تف جوشی  [۲۰].
شکل ۲-۱۳ . شماتیکی از تغییرات میکروسکوپی در هنگام تف جوشی  [۲۰]. 
شکل۲-۱۴: کامپوزیت های زمینه آلومینیومی، (a حاوی ذرات آلومینا ۴۴-۷۴µm ،  b) حاوی ذرات آلومینا ۷۴- ۱۰۵ µm 
،  c) حاوی ذرات زیرکن۴۴-۷۴µm و  d)حاوی ذرات زیرکن۷۴- ۱۰۵ µm [۲۸].
شکل۲-۱۵. دیاگرام دوتایی 2SiO-2ZrO.
شکل ۲-۱۶: تغییرات سختی نمونه های کامپوزیتی تقویت شده با آلومینا و زیرکن با اندازه ذرات مختلف [۲۸].
شکل۲- ۱۷: نرخ سایش کامپوزیت های مختلف زمینه  آلومینیمی و آلومینیم خالص [۲۸].
شکل۲- ۱۸: کاهش حجم در طی سایش کامپوزیت های مختلف زمینه  آلومینیمی و آلومینیم خالص [۲۸].
شکل ۲- ۱۹ : شکل الکترونی سطح سایشی  a)نمونه حاویSiC  b) حاوی زیرکن(۴۴-۷۴µm) و c)حاوی زیرکن (۷۴-۱۰۵µm)[۲۸].
شکل۲- ۲۰: شکل  میکروسکوپی سطح سایشی نمونه های a) آلومینیوم خالص b)حاوی ذرات آلومینا ۴۴-۷۴µm 
 c) حاوی آلومینا ۷۴-۱۰۵µm d)حاوی زیرکن۴۴-۷۴µm و e)حاوی زیرکن۷۴- µm ۱۰۵[۲۸].
شکل ۲-۲۱ . کاهش چگالی کامپوزیت با افزایش درصد حجمی تقویت کننده [۲۲]. 
شکل ۲-۲۲. افزایش تخلخل با افزایش تقویت کننده [۲۲].
شکل ۲-۲۲ . افزایش چگالی با افزایش مقدار و اندازه ذرات تقویت کننده [۱۸]. 
شکل ۲-۲۳ . افزایش تخلخل با افزایش درصد وزنی تقویت کننده [۱۸].
شکل ۲-۲۴ . تغییرات سختی با تغییر مقدار و اندازه ذارت  [۱].
شکل ۲-۲۵ . تغییرات سختی با تغییر مقدار ذارت آلومینا [۵].
شکل ۲-۲۶ . افزایش استحکام فشاری با افزایش مقدار تقویت کننده [۳۱].
شکل ۲-۲۷ . نمودار فشار ماده کامپوزیتی حاوی ذرات BN  [۸].
شکل۲-۲۸ . کاهش تغییر طول با افزایش مقدار تقویت کننده [۲۲].
شکل ۲-۲۹ . افزایش استحکام تسلیم با افزایش مقدار  SiC برای آلیاژ Al-Cu--Mn [۲۲].
شکل ۲-۳۰ . افزایش استحکام کششی با افزایش مقدار  SiC برای آلیاژ Al-Cu--Mn [۲۲].
شکل ۳-۱ . تصویر میکروسکوپ الکترونی از پودر آلومینیوم مورد استفاده.
شکل ۳-۲ . آسیاب گلوله ای- سیاره ای مورد استفاده دراین تحقیق.
شکل۳-۳.تصویر دستگاه پرس سرد ایزواستاتیک.
شکل ۳-۴ . تصویر کوره تف جوشی به همراه لوله آلومینایی و درپوش آن.
شکل ۳-۵ . تصویر دستگاه اندازه گیری چگالی در این پژوهش.
شکل ۳-۶ . تصویر تعدادی از نمونه های کامپوزیتی ساخته شده در این پژوهش.
شکل ۳-۱۲ . تصویر دو نمونه کامپوزیتی این پژوهش پس از آزمایش فشار.  
شکل ۴-۱ :  اثر درصد حجمی زیرکن  بر چگالی کامپوزیت Al-Zircon. 
شکل ۴-۲ : اثر درصد حجمی زیرکن  بر چگالی نسبی کامپوزیت Al-Zircon. 
شکل ۴-۳ : اثردمای تف جوشی بر چگالی و مقایسه چگالی های بدست آمده با چگالی تئوری. 
شکل ۴-۴ : اثردمای تف جوشی  بر چگالی نسبی. 
شکل ۴-۵ : اثر درصد  حجمی زیرکن  بر سختی کامپوزیت Al-Zircon.
شکل ۴-۶ : اثر دمای تف  جوشی  بر سختی کامپوزیت ها. 
شکل ۴-۷ : اثر درصد  حجمی زیرکن  بر تنش تسلیم کامپوزیت Al-Zircon.
شکل ۴-۸ : اثر درصد  حجمی  زیرکن  بر استحکام  فشاری کامپوزیت Al-Zircon.
شکل ۴-9: اثر درصد  حجمی  زیرکن  بر تغییر  طول تا شکست کامپوزیت Al-Zircon.
شکل۴-۱۰ : اثر دمای تف جوشی  و مقدار ذرات زیرکن   برتنش تسلیم کامپوزیت Al-Zircon.
شکل۴-۱۱ :  اثر دمای تف جوشی و مقدار ذرات زیرکن  بر استحکام  فشاری کامپوزیت Al-Zircon.
شکل۴-۱۲ : اثر دمای تف جوشی و مقدار ذرات زیرکن  برتغییر طول تا شکست کامپوزیت Al-Zircon.
شکل ۴-۱۳ : تصویر میکروسکوپ الکترونی نمونه کامپوزیت Al-Zircon  حاوی ۵/۲ درصد حجمی زیرکن.
شکل ۴-۱۴ : تصویر میکروسکوپ الکترونی نمونه کامپوزیت Al-Zircon حاوی ۵/۳ درصد حجمی زیرکن.
شکل ۴-۱۵ : تصویر میکروسکوپ الکترونی نمونه کامپوزیت Al-Zircon حاوی ۵ درصد حجمی زیرکن.
شکل ۴-۱۶ : تصویر میکروسکوپ الکترونی نمونه کامپوزیت Al-Zircon حاوی ۱۰ درصد حجمی زیرکن.
شکل ۴-۱۷ : تصویر میکروسکوپ الکترونی نمونه کامپوزیت Al-Zircon حاوی ۱۵درصد حجمی زیرکن.
شکل ۴-۱۸ : تصویر میکروسکوپ الکترونی نمونه کامپوزیت Al-Zircon حاوی ۲۰ درصد حجمی زیرکن می باشد.
شکل ۴-۱۹ : تصویر میکروسکوپ الکترونی نمونه کامپوزیت Al-Zircon حاوی ۱۵ درصد حجمی زیرکن.
شکل۴-۲۰:  تصویر میکروسکوپ الکترونی نمونه کامپوزیت Al-Zircon حاوی۲۰ درصد حجمی زیرکن.
شکل ۴-۲۱ : تصویر میکروسکوپ الکترونی نمونه کامپوزیت  Al-Zircon  تف‌جوشی شده در دمای ۶۰۰ به مدت۶۵ دقیقه.
شکل ۴-۲۲ : تصویر میکروسکوپ الکترونی نمونه کامپوزیت  Al-Zircon  تف‌جوشی شده در دمای ۶۵۰ به مدت۶۵ دقیقه.
شکل ۴-۲۳ : تصویر میکروسکوپ الکترونی نمونه  کامپوزیت  Al-Zircon تف‌جوشی شده در دماهای ۶۰۰ به مدت۶۵ دقیقه ‌.
شکل ۴-۲۴ : تصویر میکروسکوپ الکترونی نمونه  کامپوزیت  Al-Zircon تف‌جوشی شده در دماهای ۶۳۰ به مدت۶۵ دقیقه ‌.
شکل ۴-۲۵ : تصویر میکروسکوپ الکترونی نمونه  کامپوزیت  Al-Zircon تف‌جوشی شده در دماهای ۶۵۰ به مدت۶۵ دقیقه ‌.
شکل ۴-۲۶ : تصویر میکروسکوپ نوری نمونه کامپوزیت  Al-Zircon تف جوشی شده در دمای  ۶۵۰ به مدت ۶۵ دقیقه.
شکل ۴-۲۷ : تصویر میکروسکوپ نوری نمونه کامپوزیت  Al-Zircon محتوی ۵/۳درصد حجمی زیرکن.
شکل ۴-۲۸ : تصویر میکروسکوپ نوری نمونه  کامپوزیت  Al-Zircon محتوی ۵ درصد حجمی زیرکن.
شکل ۴-۲۹ : تصویر میکروسکوپ نوری نمونه  کامپوزیت  Al-Zircon محتوی ۱۰درصد حجمی زیرکن.
شکل ۴-۳۰ : تصویر میکروسکوپ نوری نمونه  کامپوزیت  Al-Zircon محتوی ۱۵درصد حجمی زیرکن.
شکل(۴-۳۱) : نمودار پراش اشعه X پودر زیرکن مورد استفاده در این تحقیق.
شکل(۴-۳۲) : نمودار پراش اشعه  X کامپوزیت آلومینیم-زیرکن حاوی ۱۰% زیرکن تفت جوشی شده شده در دمای C °۶۵۰   .
 

دانلود پایان نامه کارشناسی ارشد مهندسی شناسایی و انتخاب مواد مهندسی با عنوان ساخت کامپوزیت Al/Zircon به روش متالورژی پودر و بررسی تاثیر عوامل مختلف فرآیند ب